814 research outputs found

    The Modern Jazz Guitarist\u27s Approach to Standard Repertoire

    Get PDF
    This paper examines Gilad Hekselman, Jonathan Kreisberg, Julian Lage, Lage Lund, Mike Moreno, and Kurt Rosenwinkel through the lens of written transcription. All six musicians are analyzed using standards such as; Stella By Starlight , Stablemates , I\u27ll Be Seeing You , Sandu , and many more. The study of their transcriptions combined with details about their technique and musical equipment, will reveal a clearer understanding of their methods and style. The analysis of these transcriptions focuses on four main elements: phrasing, rhythmic choices, melodic choices, and overall thematic development

    Single sample pathway analysis in metabolomics: performance evaluation and application

    Get PDF
    Background Single sample pathway analysis (ssPA) transforms molecular level omics data to the pathway level, enabling the discovery of patient-specific pathway signatures. Compared to conventional pathway analysis, ssPA overcomes the limitations by enabling multi-group comparisons, alongside facilitating numerous downstream analyses such as pathway-based machine learning. While in transcriptomics ssPA is a widely used technique, there is little literature evaluating its suitability for metabolomics. Here we provide a benchmark of established ssPA methods (ssGSEA, GSVA, SVD (PLAGE), and z-score) alongside the evaluation of two novel methods we propose: ssClustPA and kPCA, using semi-synthetic metabolomics data. We then demonstrate how ssPA can facilitate pathway-based interpretation of metabolomics data by performing a case-study on inflammatory bowel disease mass spectrometry data, using clustering to determine subtype-specific pathway signatures. Results While GSEA-based and z-score methods outperformed the others in terms of recall, clustering/dimensionality reduction-based methods provided higher precision at moderate-to-high effect sizes. A case study applying ssPA to inflammatory bowel disease data demonstrates how these methods yield a much richer depth of interpretation than conventional approaches, for example by clustering pathway scores to visualise a pathway-based patient subtype-specific correlation network. We also developed the sspa python package (freely available at https://pypi.org/project/sspa/), providing implementations of all the methods benchmarked in this study. Conclusion This work underscores the value ssPA methods can add to metabolomic studies and provides a useful reference for those wishing to apply ssPA methods to metabolomics data

    Topological zero-dimensional defect and flux states in three-dimensional insulators

    Get PDF
    In insulating crystals, it was previously shown that defects with two fewer dimensions than the bulk can bind topological electronic states. We here further extend the classification of topological defect states by demonstrating that the corners of crystalline defects with integer Burgers vectors can bind 0D higher-order end (HEND) states with anomalous charge and spin. We demonstrate that HEND states are intrinsic topological consequences of the bulk electronic structure and introduce new bulk topological invariants that are predictive of HEND dislocation states in solid-state materials. We demonstrate the presence of first-order 0D defect states in PbTe monolayers and HEND states in 3D SnTe crystals. We relate our analysis to magnetic flux insertion in insulating crystals. We find that π-flux tubes in inversion- and time-reversal-symmetric (helical) higher-order topological insulators bind Kramers pairs of spin-charge-separated HEND states, which represent observable signatures of anomalous surface half quantum spin Hall states

    Travessia em análise: dois eus e um saquinho de culpas

    Full text link

    Insulator-to-metal transition in sulfur-doped silicon

    Get PDF
    We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant known to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T > 1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3 x 10^20 cm-3. Conduction in insulating samples is consistent with variable range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.Comment: Submission formatting; 4 journal pages equivalen

    The Bax/Bcl-2 Ratio Determines the Susceptibility of Human Melanoma Cells to CD95/Fas-Mediated Apoptosis

    Get PDF
    Defective cytochrome c release and the resulting loss of caspase-3 activation was recently shown to be essential for the susceptibility of human melanoma cells to CD95/Fas-induced apoptosis. Cytochrome c release from mitochondria is regulated by the relative amounts of apoptosis-promoting and apoptosis-inhibiting Bcl-2 proteins in the outer membrane of these organelles. The assignment of Bax/Bcl-2 ratios by quantitative Western blotting in 11 melanoma cell populations revealed a relation to the susceptibility to CD95-mediated apoptosis. We could show that a low Bax/Bcl-2 ratio was characteristic for resistant cells and a high Bax/Bcl-2 ratio was characteristic for sensitive cells. Low Bax expression was not a consequence of mutations in the p53 coding sequence. The Bax/Bcl-2 ratio was also in clear correlation with sensitivity to another cell death inducer, N-acetylsphingosine. Furthermore, Bcl-2 overexpression abolished apoptosis triggered by both apoptotic stimuli, confirming the critical role of the Bax/Bcl-2 ratio as a rheostat that determines the susceptibility to apoptosis in melanoma cells by regulating mitochondrial function. Interestingly, some chemotherapeutics lead to the activation of death pathways by CD95L upregulation, ceramide generation, direct activation of upstream caspases, or upregulation of proapoptotic genes. Taken together, these signals enter the apoptotic pathway upstream of mitochondria, resulting in activation of this central checkpoint. We therefore assumed that apoptosis deficiency of malignant melanoma can be circumvented by drugs directly influencing mitochondrial functions. For this purpose we used betulinic acid, a cytotoxic agent selective for melanoma, straightly perturbing mitochondrial functions. In fact, betulinic acid induced mitochondrial cytochrome c release and DNA fragmentation in both CD95-resistant and CD95-sensitive melanoma cell populations, independent of the Bax/Bcl-2 ratio

    Weak localization in InSb thin films heavily doped with lead

    Full text link
    The paper reports on the investigations of the weak localization (WL) effects in 3D polycrystalline thin films of InSb. The films are closely compensated showing the electron concentration n>10^{16} cm^{-3} at the total concentration of the donor and acceptor type structural defects >10^{18} cm^{-3}. Unless Pb-doped, the InSb films do not show any measurable or show very small WL effect at 4.2 K. The Pb-doping to the concentration of the order of 10^{18} cm^{-3} leads to pronounced WL effects below 7 K. In particular, a clearly manifested SO scattering is observed. From the comparison of the experimental data on temperature dependence of the magnetoresistivity and sample resistance with the WL theory, the temperature dependence of the phase destroying time is determined. The determination is performed by fitting theoretical terms obtained from Kawabata's theory to experimental data on magnetoresistance. It is concluded that the dephasing process is connected to three separate interaction processes. The first is due to the SO scatterings and is characterized by temperature-independent relaxation time. The second is associated with the electron-phonon interaction. The third dephasing process is characterized by independent on temperature relaxation time tau_c. This relaxation time is tentatively ascribed to inelastic scattering at extended structural defects, like grain boundaries. The resulting time dephasing time shows saturation in its temperature dependence. The temperature dependence of the resistance of the InSb films can be explained by the electron-electron interaction for T2 K.Comment: 15 pages with 5 figure

    Adaptive partitioning of real-time tasks on multiple processors

    Get PDF
    This paper presents a new algorithm for scheduling real-time tasks on multiprocessor/multicore systems. This new algorithm is based on combining EDF scheduling with a migration strategy that moves tasks only when needed. It has been evaluated through an extensive set of simulations that showed good performance when compared with global or partitioned EDF: a worst-case utilisation bound similar to partitioned EDF for hard real-time tasks, and a tardiness bound similar to global EDF for soft real-time tasks. Therefore, the proposed scheduler is effective for dealing with both soft and hard real-time workloads
    • …
    corecore