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ABSTRACT
This paper presents a new algorithm for scheduling real-time tasks
on multiprocessor/multicore systems. This new algorithm is based
on combining EDF scheduling with a migration strategy that moves
tasks only when needed. It has been evaluated through an extensive
set of simulations that showed good performance when compared
with global or partitioned EDF: a worst-case utilisation bound sim-
ilar to partitioned EDF for hard real-time tasks, and a tardiness
bound similar to global EDF for soft real-time tasks. Therefore, the
proposed scheduler is effective for dealing with both soft and hard
real-time workloads.

CCS CONCEPTS
•Computer systems organization→Real-time operating sys-
tems; Embedded systems; • Software and its engineering →
Real-time schedulability;
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1 INTRODUCTION
With the evolution of hardware and CPU technologies, many mod-
ern CPUs have multiple cores, even in low-power embedded sys-
tems. It is hence becoming more and more frequent to schedule
real-time applications (characterised by temporal constraints) on
multiple cores or CPUs. The approaches generally used to serve
these applications are based on global scheduling, where the sched-
uler is free to migrate tasks among cores/CPUs to respect some
global invariant, or partitioned scheduling, where each task is stat-
ically assigned to one CPU on which a uniprocessor scheduler is
used.

For example, the real-time scheduling policies provided by the
Linux kernel (SCHED_FIFO, SCHED_RR and SCHED_DEADLINE [18])
can be used to schedule tasks globally across the whole platform,
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to partition the real-time tasks across the available CPUs, or even
to partition them across clusters/islands of limited sets of CPUs
where global scheduling occurs within each CPU set.

Partitioned scheduling approaches are simpler, easier to anal-
yse (uniprocessor scheduling analysis can be easily applied) and
avoid the overheads caused by tasks migrations. On the other hand,
they are less robust against temporary overloads: if a core/CPU is
overloaded because a task executes for more time than expected,
because of an interrupt storm, or because of some other reason, the
scheduling algorithm is not able to exploit the idle times possibly
available on the other cores to tolerate the overload.

Moreover, partitioned scheduling can be used only if the taskset
is partitionable (that is, if tasks can be partitioned on the avail-
able CPUs so that existing uniprocessor scheduling algorithms can
properly serve the tasks on each CPU without missing deadlines).

Global scheduling approaches are more complex and difficult
to analyse; for example, the schedulability analysis available for
global Earliest Deadline First (EDF) or global fixed priorities is
very pessimistic. On the other hand, global algorithms can better
tolerate temporary overloads by migrating tasks from overloaded
cores/CPUs to idle ones. Moreover, global EDF guarantees that if
the total task load is less than 100% then all the tasks will have an
upper bound to their tardiness [11, 26].

1.1 Related Work
Previous research focused on supporting either hard real-time
systems (where all the deadlines of all the tasks have to be re-
spected) [2, 4, 9, 19, 23] or soft real-time systems (where a controlled
amount of missed deadlines can be tolerated) [11, 26].

Regarding hard real-time systems, it is known from literature [1]
that global EDF can be modified to have an utilisation bound which
is optimal for fixed-job-priority algorithms [4] and that optimal
multiprocessor scheduling algorithms (based on global schedul-
ing) exist [2, 9, 19, 23]. However, all these algorithms are not very
used in practice, and commonly used Operating Systems focus on
partitioned or global fixed-priority or EDF scheduling.

As a result, partitioned scheduling is generally preferred in hard
real-time systems (where execution times are more stable and tran-
sient overloads are less likely to happen, but respecting all the
deadlines is important) while global scheduling (especially global
EDF) is more used in soft real-time systems (where the tardiness
guarantees provided by global EDF are generally enough, but exe-
cution times are less predictable and transient overloads are more
likely to happen). Some previous works [5, 17] performed empirical
studies comparing the advantages and disadvantages of global vs
partitioned scheduling in various contexts.

The previous works considering hard real-time systems gener-
ally focused on optimal partitioning, such as achievable via integer
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linear programming techniques [22, 27]. Other works, instead, con-
sidered more dynamic real-time systems where on-line partitioning
approaches are required. In this context, various authors investi-
gated on the effectiveness of bin-packing heuristics such as first-fit,
worst-fit and next-fit, which have been studied at large also in other
contexts, such as memory management (see for example the sem-
inal works by Graham [14] and Johnson [15, 16], or more recent
works and comprehensive surveys on the topic[8, 25]). Many of
these works focus on the absolute approximation ratio, the mini-
mum number of bins that are needed to pack a number of items
with different weights, when using the above mentioned simple
bin-packing heuristics, in comparison to the optimum number that
would have sufficed using an optimal approach. Some authors fo-
cused on the asymptotic value of such approximation ratio, achieved
as the size of the problem grows to ∞. For example, one interest-
ing result in the area is the 12/7 ≊ 1.7143 bound for the first-fit
heuristic [8]. However, many of these works are not concerned with
scheduling of real-time tasks, so they do not study the effectiveness
of the mentioned heuristics on the performance, in terms of slack
and/or tardiness, obtained when scheduling various real-time task
sets.

1.2 Contributions
This paper focuses on the problem of scheduling independent, peri-
odic, real-time tasks on a symmetric multiprocessor through a new
migration strategy based on “adaptive partitioning”, with the goal
of taking the best of global and partitioned approaches. As detailed
in Section 3, the resulting adaptively partitioned EDF scheduling al-
gorithm uses a migration policy based on well-known heuristics to
distribute tasks among cores/CPUs so that partitioned scheduling
(and, in particular, partitioned EDF) can be used. This partitioning
heuristic is invoked only on job arrival or termination, with the aim
of ensuring that the partitioned EDF schedulability condition is met
on each core/CPU, while keeping the number of migrations to the
bare minimum. The adaptive partition rapidly converges to a static
schedulable partitioning when possible, while it provides a bounded
tardiness (like the global strategy) whenever a schedulable static
task partitioning cannot be found. To achieve this property, when
the partitioning heuristic is not able to place a task on a core/CPU
without overloading it, the new migration algorithm falls back to a
global EDF scheduling policy. However, the migration algorithm
tries to restore a partitioned EDF schedulability whenever possible1.

Adaptive partitioning can be used in both hard real-time and
soft real-time systems, by simply changing the admission control:
if the total utilisation is smaller than M+1

2 (whereM is the number
of cores/CPUs), then all the deadlines are respected, while if the
total utilisation is between M+1

2 andM then the algorithm provides
a bounded tardiness (this is an important difference respect to
most of the previously designed schedulers for either hard or soft
real-time tasks). Finally, the hard schedulability bound for the new
algorithm introduced in this paper (M+12 ) is known to be optimal
for fixed-job-priority algorithms [1].

1Although the proposed technique is a form of dynamic partitioning, the name “adap-
tive partitioning” is used to avoid confusion with a previous work [24] that used the
term “dynamic partitioning” to indicate a completely different algorithm (based on
making a distinction between real-time cores and non-real-time cores, and using a
dedicated scheduling core to perform on-line admission control on the arriving jobs).

2 DEFINITIONS AND BACKGROUND
The system under study consists of a set Γ = {τi } of real-time tasks
τi , to be scheduled onto a platform with M identical cores/CPUs.
Each real-time task τi can be modelled as a stream of jobs {Ji ,k },
where each job Ji ,k arrives (becomes ready for execution) at time
ri ,k and finishes at time fi ,k after executing for an amount of time
ci ,k (fi ,k clearly depends on the scheduler). Moreover, each task is
associated with a relative deadline Di and each job Ji ,k is required
to complete within its absolute deadline of di ,k = ri ,k + Di .

If fi ,k is smaller than or equal to the job’s absolute deadline di ,k ,
then the job respected its deadline, otherwise the deadline is missed.
Task τi respects all of its deadlines if ∀k, fi ,k ≤ di ,k . Since di ,k =
ri ,k + Di , this condition is often expressed as ∀k, fi ,k − ri ,k ≤ Di .
The tardiness of job Ji ,k is defined as max{0, fi ,k − di ,k }.

Real-time tasks are often periodic (∀k, ri ,k+1 − ri ,k = Pi ) or
sporadic (∀k, ri ,k+1 − ri ,k ≥ Pi ) with period or minimum inter-
arrival time Pi and in this work we assume Di = Pi . The exact
job execution times ci ,k are not known beforehand, however we
assume to know a reasonable Worst-Case Execution Time (WCET)
Ci ≥ ci ,k ∀k .

The goal of a real-time scheduler is to provide predictability,
so that, given a taskset Γ = {τi } (with each task τi characterised
by its parameters (Ci , Pi ,Di )) it is possible to check in advance if
any deadline will be missed (or, it is possible to provide guarantees
about the worst-case tardiness experienced each task τi ).

In case of single core, fixed-priority (with the Rate Monotonic
assignment [20]) or EDF [10] schedulers can provide the guarantee
that every task will respect all its deadlines if some schedulability
condition is respected (if Pi = Di , then the schedulability condition
is
∑
i
Ci
Pi ≤ U lub , withU lub depending on the scheduling algorithm

— for EDF,U lub = 1).
If the system is composed of multiple cores or CPUs, then differ-

ent approaches can be used:
• In case of partitioned scheduling, all tasks Γ = {τi } are par-
titioned across the CPUs so that each partition Γj ⊂ Γ is
statically associated to a single core/CPU j, and EDF (or
fixed-priority scheduling) can be used on each core/CPU
(in this case, the schedulability analysis can be performed
independently on the various cores/CPUs). Of course, this ap-
proach requires that it is possible to partition the tasks among
cores/CPUs so that every partition has

∑
τi ∈Γj

Ci
Pi ≤ 1 (if EDF

is used). However, this may not be always possible. For ex-
ample, the taskset Γ = {(6, 10, 10), (6, 10, 10), (6, 10, 10)} is
not schedulable on 2 CPUs using a partitioned approach

• In case of global scheduling, the scheduler dynamically mi-
grates tasks among cores/CPUs so that them highest prior-
ity ready tasks (or them earliest deadline ready tasks) are
scheduled (wherem is the minimum between the number
of cores/CPUs and the number of ready tasks). In this case,
the uniprocessor schedulability analysis cannot be re-used,
and new schedulability tests (which turn out to be much
more pessimistic) are needed [6, 7, 13]. Looking again at the
taskset Γ = {(6, 10, 10), (6, 10, 10), (6, 10, 10)}, it is possible to
notice that some deadlines will be missed also when using
global EDF (gEDF) scheduling, but in this case the finishing
times of all jobs will never be much larger than the absolute
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deadlines (in practice, ∀i,k, fi ,k − ri ,k ≤ 12). This is a prop-
erty of the gEDF algorithm which holds when

∑ Ci
Pi ≤ M

(withM being the number of cores/CPUs) which obviously
cannot be respected by partitioned EDF (pEDF).

While conceptually global scheduling requires that all the ready
tasks are inserted in a single global queue (ordered by priority or
deadline, so that the firstM tasks of the queue are scheduled), some
OS kernels (such as Linux) implement it by using per-core ready
task queues (“runqueues” in Linux) and migrating tasks among
them so that theM highest-priority/earliest-deadline tasks are on
M different queues. For example, the Linux SCHED_DEADLINE sched-
uling policy [18] implements gEDF through multiple runqueues,
using two “pull” and “push” operations to enforce the gEDF in-
variant. This is done by invoking “push” and “pull” every time the
earliest-deadlines tasks change2:

• When a task wakes up (becomes ready for execution) and
is inserted in the jth runqueue, a “push” operation is per-
formed to check if a task should be pushed from the jth to
some other runqueue to respect the global invariant (the M
highest-priority/earliest-deadline tasks are on M different
runqueues)3

• When the task executing on the jth core/CPU blocks (is
not ready for execution anymore), a “pull” operation is per-
formed to check if a task queued in some other runqueue
should be pulled onto the jth runqueue to respect the global
invariant.

Although this mechanism has been designed to implement global
scheduling using per-CPU runqueues, it can also be used to im-
plement some kind of trade-off between global and partitioned
scheduling. For example, the “push” operation can be modified to
control the utilisationUj of each runqueue (so that it is smaller than
U lub ). This is the basic idea of the adaptively partitioned scheduling
that will be introduced in the next section.

3 ADAPTIVELY PARTITIONED SCHEDULING
The adaptive partitioning migration strategy proposed in this paper
implements a restricted migration scheduling algorithm based on
r-EDF [3]. Since all the runqueues are ordered by absolute deadlines
(implementing the EDF algorithm, so thatU lub = 1), the algorithm
is named adaptively partitioned EDF (apEDF).

In more details, in a scheduling algorithm based on restricted
migrations a task τi that starts to execute on core/CPU j cannot
migrate until its current job is finished (each job Ji ,k executes on a
single core/CPU, and cannot migrate).

3.1 The Basic Algorithm
To simplify the description of the apEDF algorithm, let rq(τi ) in-
dicate the runqueue in which τi has been inserted (that is, the
core/CPU on which τi executes or has executed) and let Uj =∑

{i :rq(τi )=j }
Ci
Pi indicate the utilisation of the jobs executing on

2A similar mechanism is used for the fixed-priority scheduler, invoking “push” and
“pull” every time the highest-priority tasks change
3Actually, before inserting the task in the runqueue a “select_task_rq()” function is
invoked to decide in which runqueue the task has to be inserted. This is an optimisation
that can make the “push” operation unneeded and can be ignored from a conceptual
point of view.

core/CPU j. Moreover, let d j represent the absolute deadline dh,l
of the job currently executing on CPU j, or∞ if CPU j is idle.

By default, when a task τi is created its runqueue is set to 0
(rq(τi ) = 0) and will be eventually set to an appropriate runqueue
when the first job arrives (the task wakes up for the first time).

Data: Task τi to be placed with its current absolute deadline
being di ,k ; state of all the runqueues (overall
utilisationUj and deadline of the currently scheduled
task d j for each CPU j)

Result: rq(τi )
1 if Urq(τi ) ≤ 1 then

/* Stay on current CPU if schedulable */

2 return rq(τi )

3 else
/* Search for a CPU where the task can fit */

4 for j = 0 toM − 1 do /* Iterate over runqueues */

5 if Uj +
Ci
Pi ≤ 1 then

6 return j /* First-fit heuristic */

7 end
8 end

/* Find the runqueue executing the task with

the farthest away deadline */

9 h = 0
10 for j = 1 toM − 1 do /* Iterate over runqueues */

11 if d j > dh then
12 h = j

13 end
14 end
15 if dh > di ,k then

/* τi is migrated to runqueue h, where it

will be the earliest deadline one */

16 return h
17 end

/* Stay on the current runqueue otherwise */

18 return rq(τi )

19 end
Algorithm 1: Algorithm to select a runqueue for a task τi on
each job arrival.

When job Ji ,k of task τi arrives at time ri ,k , the migration strat-
egy selects a runqueue rq(τi ) for τi (that is, a core/CPU on which
τi will be scheduled), by using Algorithm 1.

The algorithm uses information about τi and the state of the var-
ious runqueues. Based on this information, it tries to schedule tasks
so that runqueues are not overloaded (∀j,Uj ≤ 1) while reducing
the number of migrations. IfUrq(τi ) ≤ 1 (Line 1), then rq(τi ) is left
unchanged and the task is not migrated (Line 2). Otherwise (lines 4
— 18), an appropriate runqueue rq(τi ) is selected as follows:

• If ∃j : Uj +
Ci
Pi ≤ 1, then select the first runqueue j having

this property: j = min{h : Uh +
Ci
Pi ≤ 1} (Lines 4 — 8). In

other words, Lines 4 — 8 implement the well-known First-Fit
(FF) heuristic, but other heuristics such as Best-Fit (BF) or
Worst-Fit (WF) can be used as well
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• If the execution arrives to Line 9, this means that ∀j,Uj +
Ci
Pi > 1 (task τi does not fit on any runqueue). Then, select a
runqueue j based on comparing the absolute deadlines di ,k
and {d j }, as done by the gEDF strategy (Lines 9 — 17):
– If dh ≡ maxj {d j } > di ,k (Line 15), select the runqueue h
currently running the task with the farthest away deadline
into the future (Line 16)4

– Otherwise, do not migrate the task (line 18).
Since rq(τi ) is set to 0 when τi is created and is updated only

whenU0 > 1 (the check at Line 1 fails) using the FF heuristic (Lines
4 — 8), it can be seen that if FF can generate a schedulable task par-
titioning then Algorithm 1 behaves as FF and has the FF properties.
Previous work [21] proved that if U ≤ M+1

2 then FF generates a
schedulable partitioning, hence apEDF is able to correctly schedule
tasksets withU ≤ M+1

2 without missing any deadline5.
The check at Line 1 of the algorithm ensures that if task τi has

been previously inserted in a runqueue with Ui ≤ 1, then it is not
migrated; hence, only tasks that have been assigned to overloaded
CPUs (potentially suffering because of missed deadlines) are mi-
grated. As a result, tasks can initially migrate, but if Algorithm 1
is able to find a schedulable partitioning then the tasks do not mi-
grate anymore. This is an important difference between apEDF and
r-EDF. The latter “forgets” the CPU on which a task has been run
at each task deadline di ,k , decreasingUj by Ci

Pi at that time, poten-
tially migrating tasks at each job arrival/activation, even if they
are correctly partitioned. Algorithm 1, instead, avoids unneeded
migrations by letting tasks stay on the same CPU as long as there
are no overloads, updating the runqueues’ utilisations only when
tasks migrate (and not when they de-activate).

If the FF heuristic is not able to find a schedulable partitioning,
apEDF allows to migrate tasks at every job arrival, so that if a
schedulable task partitioning exists then Algorithm 1 can converge
to it (by only migrating tasks that have been placed on overloaded
runqueues — that is, runqueues withUj > 1). In this case, only few
deadlines will be missed at the beginning of the schedule (and after
a sufficient amount of time no deadlines will be missed anymore).

A formal proof of this property has not been developed yet, but
simulations seem to show that if a schedulable partitioning of the
tasks exists (that is, if tasks τi ∈ Γ can be assigned to runqueues
0...M − 1 so that ∀0 ≤ j < M,Uj ≤ 1), then after a finite number
of migrations the tasks’ assignments {rq(τi )} converge to such a
partitioning.

If, instead, a schedulable tasks partitioning does not exist, then
Lines 9 — 17 of Algorithm 1 ensure that the M earliest-deadline
tasks are either scheduled or placed on non-overloaded cores/CPUs.
Intuitively, this mechanism tries to make sure that tasks with small
absolute deadlines cannot be starved and the difference between
the current time and the absolute deadline is bounded. Hence, it
can be conjectured that ifU ≤ M then each task still experiences
a bounded tardiness (∃L : ∀τi ∈ Γ,maxk { fi ,k − di ,k } ≤ L) even if
such a schedulable partitioning does not exist.

4Notice that for the sake of clarity Lines 9 — 14 show how to compute maxj {d j } by
iterating on all the runqueues, but the Linux kernel stores all the d j in a heap, so the
maximum can be obtained with a logarithmic complexity in the number of CPUs.
5The same work [21] also proves that, if Ci /Pi ≤ β ∀i , then the FF utilisation bound
is higher:U ≤

Mβ+1
β+1 .

In other words, the apEDF is designed to provide the good prop-
erties of both pEDF and gEDF.

Data: Runqueue rq where to pull; state of all the runqueues
Result: Task τi to be pulled

1 if rq is not empty then
2 return none
3 else
4 τ = none; min =∞;

/* Search for a task τ to pull */

5 for j = 0 toM − 1 do /* Iterate over runqueues */
6 if Uj > 1 then
7 if d ′j < min then
8 min = d ′j

9 τ = second(j)
10 end
11 end
12 end
13 return τ

14 end
Algorithm 2: Algorithm to pull a task in a2pEDF.

3.2 Reducing the Tardiness
Although apEDF can provide a bounded tardiness if U ≤ M , the
tardiness bound L can be quite large (much larger than the one
provided by gEDF), as it will be shown in Section 4. This is due
to the fact that the runqueue on which a job Ji ,k is enqueued is
selected at time ri ,k when the job arrives; if task τi does not fit on
any runqueue, the target runqueue is selected based on the absolute
deadlines {d j } of the jobs that are executing on all CPUs at time
ri ,k , so the selection can be sub-optimal after some of these jobs
have finished.

This issue is addressed by the improved “a2pEDF” algorithm that
runs a “pull” operation each time a job finishes. This operation (de-
scribed by Algorithm 2) is similar to the “pull” operation currently
used by the Linux scheduler, but only pulls tasks on idle CPUs (see
the check on Line 1) and only pulls from overloaded runqueues (see
the check on Line 6). In the description of the algorithm, “second(j)”
indicates the first non-executing task in runqueue j and d ′j indi-
cates the absolute deadline of such a task (or ∞ if the runqueue
does not contain any task that is not executing). Notice that, in
contrast with apEDF, a2pEDF does not follow a restricted migra-
tions approach, because a “pull” operation can migrate a job after
it started to execute on a core/CPU (and has been preempted by an
earlier-deadline task).

Finally, it is worth noticing that, although apEDF and a2pEDF
might look more complex than the “original” pEDF and gEDF al-
gorithms, they can easily be implemented in the Linux kernel. As
previously mentioned, Linux currently implements the gEDF pol-
icy for SCHED_DEADLINE by storing per-CPU runqueues and using
“push” and “pull” operations to make sure that the global dead-
line ordering is respected. The current “push” operation uses a
“find_later_rq()” function that implements Lines 9 — 17 of Algo-
rithm 1, and the current “pull” operation implements Lines 4 — 13
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of Algorithm 2; hence, apEDF can be easily implemented by modi-
fying the “push” operation (adding Lines 1 — 8) and making “pull”
a null operation. The Linux kernel already tracks the runqueue
utilisations Uj (named “runqueue bandwidth” and stored in the
“rq_bw” field of the runqueue structure), hence implementing Lines
1 — 8 of Algorithm 1 is not difficult. The a2pEDF algorithm can
then be implemented by re-introducing the “pull” operation with
small modifications respect to the current code (the only difference
is that the a2pEDF “pull” only pulls tasks if the current CPU is idle).

4 EXPERIMENTAL EVALUATION
The apEDF and a2pEDF algorithms have been implemented in a
scheduling simulator, to extensively check their properties and
compare their performance with gEDF.

Multiple sets of simulations have been performed by using ran-
dom tasksets (generated by using the Randfixedsum algorithm [12])
with different sizes and utilisations (for each configuration of the
taskset’s parameters, 30 different tasksets have been simulated).
Each taskset has been simulated from time 0 to 2 ∗ H , where
H = lcmi {Pi } is the taskset’s hyperperiod.

First of all, the apEDF hard schedulability property (ifU ≤ M+1
2 ,

then no deadline is missed) has been verified through simulations.
A large number of tasksets has been generated and simulated on
2, 4, 8 and 16 CPUs, settingU = M+1

2 and using a number of tasks
ranging from 2M to 3M . In all the simulations, no deadlines were
missed, confirming the property.

Then, the next sets of experiments compared the performance of
apEDF (and a2pEDF) with the performance of gEDF. Simulating the
previously generated tasksets with gEDF it turned out that gEDF
misses deadlines with many of them. To perform a more systematic
comparison, more tasksets have been generated, varying their utili-
sation U from a little bit less than M+1

2 to almostM . The tasksets
have been simulated using both gEDF and apEDF andmeasuring the
percentage of deadlines missed by the two algorithms. For example,
Figures 1, 2 and 3 show the percentage of missed deadlines and the
average number of migrations per job whenM = 2, 4, 8 (the figures
show the results for tasksets composed by N = 16 tasks, but similar
results have been obtained with different values of N ). Notice that
the plots about missed deadlines use a logarithmic scale on the Y
axis to make the figure more readable. The results presented in the
figures indicate that apEDF performs better than gEDF in most of
the cases, but has some issues (resulting in a very large percentage
of missed deadlines — for example, more than 30% forM = 4 and
U = 3.9, or more than 20% for M = 8 and U > 7.1) for “extreme”
values of the utilisationU .

Looking at the average migrations per job, it is interesting to
see how for gEDF this number increases with the utilisation, while
it stays to almost 0 for apEDF and low utilisations6. When the
utilisation increases, and some of the generated tasksets are not
partitionable (it is not possible to find a schedulable partitioning for
them), the average number of migrations per job in apEDF increases
(because Lines 9 — 17 of Algorithm 1 are used), but it is always very
small compared to gEDF.

6The only measured migrations are the ones on the first job, from runqueue 0 to an
appropriate runqueue.

An analysis of the problematic tasksets for which apEDF results
in a high percentage of missed deadlines revealed that the issue
is caused by the small number of migrations used by apEDF. For
these tasksets it is not possible to find a schedulable partitioning,
hence apEDF tries to respect the gEDF invariant when selecting a
runqueue, but does not perform any “pull” operation (notice, again,
that the number of migrations per job is small even if the tasksets
are not partitionable). In contrast, gEDF uses a “pull” operation
when jobs terminate (increasing the number of migrations per job),
exploiting cores that would become idle. This suggests that intro-
ducing a “pull” phase in apEDF can fix the issue, and in fact in these
situations a2pEDF performs much better and can again outperform
gEDF, as shown in the figures: for example, the percentage of dead-
lines missed by a2pEDF forM = 4 andU = 3.9 is 7% — notice that
it is 9% for gEDF (this result is confirmed by other experiments
presented later). On the other hand, the figures plotting the average
number of migrations per job show that a2pEDF causes less migra-
tions than gEDF. Figure 3 is even more interesting, showing that
for very high values of the utilisation a2pEDF misses a percentage
of deadlines similar to gEDF (so, for non partitionable tasksets the
a2pEDF performance and the gEDF performance are similar).

Finally, notice that for apEDF the percentage of missed deadlines
is 0 up to U = 1.8 for M = 2, U = 3.3 for M = 4 and U = 6.2 for
M = 8.

Next, the impact of the number of CPUs on the apEDF perfor-
mance has been evaluated. Multiple tasksets with a fixed utilisation
and number of tasks have been generated and simulated on 2, 4
and 8 CPUs. In general, apEDF performed better than gEDF, both
in terms of percentage of missed deadlines (soft real-time metric)
and in terms of number of tasksets missing at least a deadline (hard
real-time metric). Since the most interesting results were obtained
with high utilisations, here the results forU = 0.8M (and a number
of tasks fixed to N = 16) are reported. Figure 4 shows the percent-
age of tasks missing at least one deadline for gEDF and apEDF with
two kinds of tasksets: in the first case (“global” tasksets, on the left
of the figure) the tasksets with utilisation U = 0.8M and N = 16
tasks were directly generated using the Randfixedsum algorithm,
while in the second case (“part” tasksets, on the right of the fig-
ure)M tasksets with utilisation U and N /M tasks were generated
and merged to create a single larger taskset (the second kind of
tasksets has been generated to check that apEDF can converge to
the schedulable task partitioning).

As it can be noticed from the figure, the percentage of tasksets
missing at least a deadline with apEDF is always smaller than the
one with gEDF, showing that apEDF has better hard real-time per-
formance than gEDF. The only case in which deadlines are missed
in a relevant percentage of tasksets is the one with “global” tasksets,
M = 8, N = 16 andU = 6.4. This happens because the number of
tasks is relatively small respect to the number of CPUs (N = 2M)
while the utilisation is quite high; in this situation, the taskset is
likely not partitionable (hence, apEDF falls back to something sim-
ilar to gEDF). The small percentage of tasksets missing at least a
deadline with the same configuration (M = 8,U = 6.4) and “part”
tasksets has been investigated and it turned out that it is due to
the initial deadline misses of some tasksets, happening before the
(stable) schedulable task partitioning has been reached (this has
been verified by checking that increasing the simulation length the
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Figure 1: Percentages of missed deadlines and average migrations per job (as a function ofU ) with 2 CPUs and 16 tasks.
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Figure 2: Percentages of missed deadlines and average migrations per job (as a function ofU ) with 4 CPUs and 16 tasks.
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Figure 3: Percentages of missed deadlines and average migrations per job (as a function ofU ) with 8 CPUs and 16 tasks.
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Figure 4: Percentages of tasksets missing at least a deadline with 2, 4 and 8 CPUs,U = 0.8M and scheduling 16 tasks.

Table 1: Percentage ofmissed deadlines with 2, 4 and 8 CPUs,
U = 0.8M and scheduling 16 tasks.

CPUs gEDF apEDF
part global part global

2 0.000000008 0.0000067 0 0
4 0.000008264 0.8935803 0 0.000000004
8 0.000022046 1.5758920 0.000000004 0.000000209

Table 2: Average number of migrations per job with 2, 4 and
8 CPUs,U = 0.8M and scheduling 16 tasks.

CPUs gEDF apEDF
part global part global

2 1.887913 1.965759 0.0000000056 0.0000000048
4 3.157379 3.188243 0.0000000041 0.0000000048
8 3.655992 2.795994 0.0000000060 0.0000000048

total number of deadlines missed by apEDF did not increase — of
course, it increased using gEDF).

Table 1 compares the soft real-time performance of apEDF and
gEDF, by showing the percentage of missed deadlines. The table
confirms that gEDF can provide good soft real-time performance
(even if deadlines are missed in many tasksets, the percentage of
missed deadlines is small). However, apEDF still performs better
than gEDF even for this metric.

Table 2, instead, compares the average number of migrations
per job measured in the previous simulations. Again, apEDF results
in a very small number of migrations compared to gEDF (notice
that the number of migrations for apEDF is not much affected by
variations in the number of CPUs because for most of the generated
tasksets apEDF is able to find a schedulable partitioning after a few
migrations).

Finally, some experiments have been performed to better investi-
gate the situations in which the apEDF algorithm does not perform
well (because of non-partitionable tasksets). As seen, this happens
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Figure 5: Percentage of missed deadlines withM = 8 U = 7.6
and N ranging from 15 to 25.

when the utilisation is close to the number of CPUs and the num-
ber of tasks is small compared to the number of CPUs. Figure 5,
plotting the percentage of missed deadlines for M = 8, U = 7.6
and N ranging from 15 to 25, shows that for N < 19 apEDF misses
more deadlines than gEDF. (however, looking at the response times
it was possible to see that the tardiness is always limited and does
not increase with simulations of longer durations).

Introducing a “pull” phase similar to the gEDF one, as done in the
a2pEDF algorithm, solves the issue: as shown in the figure, a2pEDF
always misses fewer deadlines than gEDF, even for small values
of N . As previously mentioned, the a2pEDF algorithm is not based
on restricted migrations, and the average number of migrations
per job is higher than the one for apEDF; however, as shown in
Figure 6, the number of migrations is still small respect to gEDF.
Also notice that when the number of tasks increases the average
numbers of migrations for apEDF and a2pEDF are almost equal.



SAC ’20, March 30-April 3, 2020, Brno, Czech Republic Luca Abeni and Tommaso Cucinotta

 0

 1

 2

 3

 4

 5

 6

 7

 8

 14  16  18  20  22  24  26

A
v
e

ra
g

e
 m

ig
ra

ti
o

n
s
 p

e
r 

jo
b

Number of Tasks

gEDF
apEDF

a2pEDF

Figure 6: Average migrations per job withM = 8U = 7.6 and
N ranging from 15 to 25.

5 CONCLUSIONS AND FUTUREWORK
This paper presented a new migration strategy for EDF-based mul-
tiprocessor real-time schedulers, leading to the apEDF and a2pEDF
scheduling algorithms. Respect to the traditional gEDF, these algo-
rithms allow for a less pessimistic schedulability analysis (leading to
better hard real-time performance), while respect to pEDF they al-
low for a better handling of non-partitionable tasksets. The a2pEDF
algorithm provides smaller tardiness than apEDF when the utili-
sation is high (and the number of tasks is small). In this situation,
apEDF performs slightly worse than gEDF while a2pEDF provides
better performance than gEDF. On the other hand, apEDF is simpler
than a2pEDF, and can be implemented more efficiently, because it
does not require any “pull” operation when jobs finish.

As future work, the new migration policy will be implemented
in the Linux kernel, replacing the global EDF algorithm used for the
SCHED_DEADLINE policy, to verify its advantages through a real im-
plementation. Moreover, the theoretical properties will be formally
proved and the algorithms (with corresponding schedulability anal-
ysis) will be extended to support arbitrary affinities. The possibility
to use the adaptive partitioning approach to support the coexistence
of soft and hard real-time tasks will also be investigated.
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