1,070 research outputs found

    Partition Pooling for Convolutional Graph Network Applications in Particle Physics

    Full text link
    Convolutional graph networks are used in particle physics for effective event reconstructions and classifications. However, their performances can be limited by the considerable amount of sensors used in modern particle detectors if applied to sensor-level data. We present a pooling scheme that uses partitioning to create pooling kernels on graphs, similar to pooling on images. Partition pooling can be used to adopt successful image recognition architectures for graph neural network applications in particle physics. The reduced computational resources allow for deeper networks and more extensive hyperparameter optimizations. To show its applicability, we construct a convolutional graph network with partition pooling that reconstructs simulated interaction vertices for an idealized neutrino detector. The pooling network yields improved performance and is less susceptible to overfitting than a similar network without pooling. The lower resource requirements allow the construction of a deeper network with further improved performance

    Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment

    Full text link
    The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu Photonics K.K. (HPK) is used in various experiments in particle and astroparticle physics. We describe the test and calibration of 474 PMTs for the reactor antineutrino experiment Double Chooz. The unique test setup at Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate 30 PMTs simultaneously and to characterize the single photo electron response, transit time spread, linear behaviour and saturation effects, photon detection efficiency and high voltage calibration

    Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment

    Full text link
    The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu Photonics K.K. (HPK) is used in various experiments in particle and astroparticle physics. We describe the test and calibration of 474 PMTs for the reactor antineutrino experiment Double Chooz. The unique test setup at Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate 30 PMTs simultaneously and to characterize the single photo electron response, transit time spread, linear behaviour and saturation effects, photon detection efficiency and high voltage calibration

    Qualification Tests of 474 Photomultiplier Tubes for the Inner Detector of the Double Chooz Experiment

    Full text link
    The hemispherical 10" photomultiplier tube (PMT) R7081 from Hamamatsu Photonics K.K. (HPK) is used in various experiments in particle and astroparticle physics. We describe the test and calibration of 474 PMTs for the reactor antineutrino experiment Double Chooz. The unique test setup at Max-Planck-Institut f\"ur Kernphysik Heidelberg (MPIK) allows one to calibrate 30 PMTs simultaneously and to characterize the single photo electron response, transit time spread, linear behaviour and saturation effects, photon detection efficiency and high voltage calibration

    Afterpulse Measurements of R7081 Photomultipliers for the Double Chooz Experiment

    Get PDF
    We present the results of afterpulse measurements performed as qualification test for 473 inner detector photomultipliers of the Double Chooz experiment. The measurements include the determination of a total afterpulse occurrence probability as well as an average time distribution of these pulses. Additionally, more detailed measurements with different light sources and simultaneous charge and timing measurements were performed with a few photomultipliers to allow a more detailed understanding of the effect. The results of all measurements are presented and discussed

    Cattle Raiding, Cultural Survival, and Adaptability of East African Pastoralists

    Get PDF
    This is the published version. Also found here http://www.jstor.org/stable/359710

    Symmetry breaking in crossed magnetic and electric fields

    Get PDF
    We present the first observations of cylindrical symmetry breaking in highly excited diamagnetic hydrogen with a small crossed electric field, and we give a semiclassical interpretation of this effect. As the small perpendicular electric field is added, the recurrence strengths of closed orbits decrease smoothly to a minimum, and revive again. This phenomenon, caused by interference among the electron waves that return to the nucleus, can be computed from the azimuthal dependence of the classical closed orbits.Comment: 4 page REVTeX file including 5 postscript files (using psfig) Accepted for publication in Physical Review Letters. Difference from earlier preprint: we have discovered the cause of the earlier apparent discrepancy between experiment and theory and now achieve excellent agreemen

    Detecting the Neutrino Mass Hierarchy with a Supernova at IceCube

    Full text link
    IceCube, a future km^3 antarctic ice Cherenkov neutrino telescope, is highly sensitive to a galactic supernova (SN) neutrino burst. The Cherenkov light corresponding to the total energy deposited by the SN neutrinos in the ice can be measured relative to background fluctuations with a statistical precision much better than 1%. If the SN is viewed through the Earth, the matter effect on neutrino oscillations can change the signal by more than 5%, depending on the flavor-dependent source spectra and the neutrino mixing parameters. Therefore, IceCube together with another high-statistics experiment like Hyper-Kamiokande can detect the Earth effect, an observation that would identify specific neutrino mixing scenarios that are difficult to pin down with long-baseline experiments. In particular, the normal mass hierarchy can be clearly detected if the third mixing angle is not too small, sin^2 theta_13 < 10^-3. The small flavor-dependent differences of the SN neutrino fluxes and spectra that are found in state-of-the-art simulations suffice for this purpose. Although the absolute calibration uncertainty at IceCube may exceed 5%, the Earth effect would typically vary by a large amount over the duration of the SN signal, obviating the need for a precise calibration. Therefore, IceCube with its unique geographic location and expected longevity can play a decisive role as a "co-detector" to measure SN neutrino oscillations. It is also a powerful stand-alone SN detector that can verify the delayed-explosion scenario.Comment: 19 pages, 6 Figs, final version accepted by JCAP, some references adde
    corecore