16 research outputs found

    Mast Cells: Key Contributors to Cardiac Fibrosis

    No full text
    Historically, increased numbers of mast cells have been associated with fibrosis in numerous cardiac pathologies, implicating mast cells in the development of cardiac fibrosis. Subsequently, several approaches have been utilised to demonstrate a causal role for mast cells in animal models of cardiac fibrosis including mast cell stabilising compounds, rodents deficient in mast cells, and inhibition of the actions of mast cell-specific proteases such as chymase and tryptase. Whilst most evidence supports a pro-fibrotic role for mast cells, there is evidence that in some settings these cells can oppose fibrosis. A major gap in our current understanding of cardiac mast cell function is identification of the stimuli that activate these cells causing them to promote a pro-fibrotic environment. This review will present the evidence linking mast cells to cardiac fibrosis, as well as discuss the major questions that remain in understanding how mast cells contribute to cardiac fibrosis

    The role of neuropeptides in adverse myocardial remodeling and heart failure

    No full text
    In addition to traditional neurotransmitters of the sympathetic and parasympathetic nervous systems, the heart also contains numerous neuropeptides. These neuropeptides not only modulate the effects of neurotransmitters, but also have independent effects on cardiac function. While in most cases the physiological actions of these neuropeptides are well defined, their contributions to cardiac pathology are less appreciated. Some neuropeptides are cardioprotective, some promote adverse cardiac remodeling and heart failure, and in the case of others their functions are unclear. Some have both cardioprotective and adverse effects depending on the specific cardiac pathology and progression of that pathology. In this review, we briefly describe the actions of several neuropeptides on normal cardiac physiology, before describing in more detail their role in adverse cardiac remodeling and heart failure. It is our goal to bring more focus toward understanding the contribution of neuropeptides to the pathogenesis of heart failure, and to consider them as potential therapeutic targets

    Intravenous Immunoglobulin Protects Neurons Against Amyloid Beta-Peptide Toxicity And Ischemic Stroke By Attenuating Multiple Cell Death Pathways

    No full text
    Intravenous immunoglobulin (IVIg) preparations obtained by fractionating blood plasma, are increasingly being used increasingly as an effective therapeutic agent in treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke and Alzheimer\u27s disease has been proposed, but little is known about the neuroprotective mechanisms of IVIg. In this study, we investigated the effect of IVIg on downstream signaling pathways that are involved in neuronal cell death in experimental models of stroke and Alzheimer\u27s disease. Treatment of cultured neurons with IVIg reduced simulated ischemia- and amyloid βpeptide (Aβ)-induced caspase 3 cleavage, and phosphorylation of the cell death-associated kinases p38MAPK, c-Jun NH2-terminal kinase and p65, in vitro. Additionally, Aβ-induced accumulation of the lipid peroxidation product 4-hydroxynonenal was attenuated in neurons treated with IVIg. IVIg treatment also up-regulated the anti-apoptotic protein, Bcl2 in cortical neurons under ischemia-like conditions and exposure to Aβ. Treatment of mice with IVIg reduced neuronal cell loss, apoptosis and infarct size, and improved functional outcome in a model of focal ischemic stroke. Together, these results indicate that IVIg acts directly on neurons to protect them against ischemic stroke and Aβ-induced neuronal apoptosis by inhibiting cell death pathways and by elevating levels of the anti-apoptotic protein Bcl2. Intravenous immunoglobulin for Stroke Intravenous immunoglobulin(IVIg) is a therapeutic modality approved for the treatment of various condition. This study was performed in order to understand the mechanism ofhow IVIg elicits its neuroprotective effect in stroke and amyloid beta induced neuronal apoptosis. The findings from this study showed that IVIg elicits its neuroprotective effects by not only inhibiting the cell death pathways but also elevating the anti-apoptotic protein Bcl2. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry

    Intravenous immunoglobulin (IVIg) provides protection against endothelial cell dysfunction and death in ischemic stroke

    No full text
    The brain endothelium is a key component of the blood brain barrier which is compromised following ischemia, allowing infiltration of damaging immune cells and other inflammatory molecules into the brain. Intravenous immunoglobulin (IVIg) is known to reduce infarct size in a mouse model of experimental stroke.Flow cytometry analysis showed that the protective effect of IVIg in ischemia and reperfusion injury in vivo is associated with reduced leukocyte infiltration, suggesting an involvement of the endothelium. In an in vitro model of ischemia, permeability analysis of the mouse brain endothelial cell line bEnd.3 revealed that IVIg prevented the loss of permeability caused by oxygen and glucose deprivation (OGD). In addition, western blot analysis of these brain endothelial cells showed that IVIg prevented the down-regulation of tight junction proteins claudin 5 and occludin and the decline in anti-apoptotic proteins Bcl-2 and Bcl-XL caused by OGD.IVIg protects endothelial cells from ischemic insult. These studies support the use of IVIg as a pharmacological intervention for stroke therapy

    Intravenous immunoglobulin (IVIg) provides protection against endothelial cell dysfunction and death in ischemic stroke

    No full text
    The brain endothelium is a key component of the blood brain barrier which is compromised following ischemia, allowing infiltration of damaging immune cells and other inflammatory molecules into the brain. Intravenous immunoglobulin (IVIg) is known to reduce infarct size in a mouse model of experimental stroke.Flow cytometry analysis showed that the protective effect of IVIg in ischemia and reperfusion injury in vivo is associated with reduced leukocyte infiltration, suggesting an involvement of the endothelium. In an in vitro model of ischemia, permeability analysis of the mouse brain endothelial cell line bEnd.3 revealed that IVIg prevented the loss of permeability caused by oxygen and glucose deprivation (OGD). In addition, western blot analysis of these brain endothelial cells showed that IVIg prevented the down-regulation of tight junction proteins claudin 5 and occludin and the decline in anti-apoptotic proteins Bcl-2 and Bcl-XL caused by OGD.IVIg protects endothelial cells from ischemic insult. These studies support the use of IVIg as a pharmacological intervention for stroke therapy

    Replacement of Lost Substance P Reduces Fibrosis in the Diabetic Heart by Preventing Adverse Fibroblast and Macrophage Phenotype Changes

    No full text
    Reduced levels of the sensory nerve neuropeptide substance P (SP) have been reported in the diabetic rat heart, the consequence being a loss of cardioprotection in response to ischemic post-conditioning. We considered whether this loss of SP also predisposes the heart to non-ischemic diabetic cardiomyopathy in the form of fibrosis and hypertrophy. We report that diabetic Leprdb/db mice have reduced serum SP and that administration of exogenous replacement SP ameliorated cardiac fibrosis. Cardiac hypertrophy did not occur in Leprdb/db mice. Cardiac fibroblasts exposed to high glucose converted to a myofibroblast phenotype and produced excess extracellular matrix proteins; this was prevented by the presence of SP in the culture media. Cardiac fibroblasts exposed to high glucose produced increased amounts of the receptor for advanced glycation end products, reactive oxygen species and inflammatory cytokines, all of which were prevented by SP. Cultured macrophages assumed an M1 pro-inflammatory phenotype in response to high glucose as indicated by increased TNF-α, CCL2, and IL-6. SP promoted a shift to the reparative M2 macrophage phenotype characterized by arginase-1 and IL-10. Leprdb/db mice showed increased left ventricular M1 phenotype macrophages and an increase in the M1/M2 ratio. Replacement SP in Leprdb/db mice restored a favorable M1 to M2 balance. Together these findings indicate that a loss of SP predisposes the diabetic heart to developing fibrosis. The anti-fibrotic actions of replacement SP involve direct effects on cardiac fibroblasts and macrophages to oppose adverse phenotype changes. This study identifies the potential of replacement SP to treat diabetic cardiomyopathy

    The complement C3a receptor contributes to melanoma tumorigenesis by inhibiting neutrophil and CD4+ T cell responses

    No full text
    The complement peptide C3a is a key component of the innate immune system and a major fragment produced following complement activation.We used a murine model of melanoma (B16-F0) to identify a hitherto unknown role for C3a-C3aR signaling in promoting tumor growth. The results show that the development and growth of B16-F0 melanomas is retarded in mice lacking C3aR, whereas growth of established melanomas can be arrested by C3aR antagonism. Flow cytometric analysis showed alterations in tumor-infiltrating leukocytes in the absence of C3aR. Specifically, neutrophils and CD4+ T lymphocyte subpopulations were increased, whereas macrophages were reduced. The central role of neutrophils was confirmed by depletion experiments that reversed the tumor inhibitory effects observed in C3aR-deficient mice and returned tumor-infiltrating CD4+ T cells to control levels. Analysis of the tumor microenvironment showed upregulation of inflammatory genes that may contribute to the enhanced antitumor response observed in C3aR-deficient mice. C3aR deficiency/inhibition was also protective in murine models of BRAFV600E mutant melanoma and colon and breast cancer, suggesting a tumor-promoting role for C3aR signaling in a range of tumor types. We propose that C3aR activation alters the tumor inflammatory milieu, thereby promoting tumor growth. Therapeutic inhibition of C3aR may therefore be an effective means to trigger an antitumor response in melanoma and other cancers

    Intermittent fasting attenuates inflammasome activity in ischemic stroke

    No full text
    Recent findings have revealed a novel inflammatory mechanism that contributes to tissue injury in cerebral ischemia mediated by multi-protein complexes termed inflammasomes. Intermittent fasting (IF) can decrease the levels of pro-inflammatory cytokines in the periphery and brain. Here we investigated the impact of IF (16. h of food deprivation daily) for 4. months on NLRP1 and NLRP3 inflammasome activities following cerebral ischemia. Ischemic stroke was induced in C57BL/6J mice by middle cerebral artery occlusion, followed by reperfusion (I/R). IF decreased the activation of NF-κB and MAPK signaling pathways, the expression of NLRP1 and NLRP3 inflammasome proteins, and both IL-1β and IL-18 in the ischemic brain tissue. These findings demonstrate that IF can attenuate the inflammatory response and tissue damage following ischemic stroke by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity

    Evidence for a detrimental role of TLR8 in ischemic stroke

    No full text
    Toll-like receptors (TLRs) are transmembrane pattern-recognition receptors that initiate signals in response to diverse pathogen-associated molecular patterns. Several groups have recently reported a role for TLR2 and TLR4 in ischemic stroke-induced brain injury. However, relatively little is known about the role of TLR8 in ischemic stroke. Here we provide the first evidence that TLR8 activation plays a detrimental role in stroke outcome by promoting neuronal apoptosis and T cell-mediated post-stroke inflammation. TLR8 is expressed in cerebral cortical neurons, where its levels and downstream signaling via JNK are increased in response to oxygen glucose deprivation (OGD). Treatment with a TLR8 agonist activated pro-apoptotic JNK and increased neuronal cell death during OGD. Furthermore, selective knockdown of TLR8 using siRNA protected SH-SY5Y cells following OGD, and TLR8 agonist administration in vivo increased mortality, neurological deficit and T cell infiltration following stroke. Taken together, our findings indicate a detrimental role for neuronal TLR8 signaling in the triggering of post-stroke inflammation and neuronal death

    EphA2<sup>−/−</sup> mice demonstrate less tight junction protein disruption following focal cerebral I/R.

    No full text
    <p>Cerebral I/R-induced tight junction disruption and BBB damage were analyzed with zona occludens-1 (ZO-1) and matrix metalloproteinase-9 (MMP-9) antibodies respectively, by immunoblotting. (A and B) EphA2<sup>−/−</sup> mice demonstrate significantly lower levels of MMP-9 in I/R samples compared to the wild type group, suggestive of lower I/R-induced BBB damage. (A and C) EphA2<sup>−/−</sup> mice demonstrate significantly higher levels of ZO-1 in sham and I/R samples when compared to the wild type group, indicative of less I/R-induced tight junction disruption. Data are mean ± SEM, n  = 4–6. *p&lt;0.05 or **p&lt;0.01 relative to the wild type controls.</p
    corecore