8 research outputs found
Plan quality assessment in clinical practice : Results of the 2020 ESTRO survey on plan complexity and robustness
Altres ajuts: DCCC Radiotherapy - The Danish National Research Centre for Radiotherapy, Danish Cancer Society (R191-A11526); Danish Comprehensive Cancer Centre, and the Danish Cancer Society (R167-A11003).Purpose: Plan complexity and robustness are two essential aspects of treatment plan quality but there is a great variability in their management in clinical practice. This study reports the results of the 2020 ESTRO survey on plan complexity and robustness to identify needs and guide future discussions and consensus. Methods: A survey was distributed online to ESTRO members. Plan complexity was defined as the modulation of machine parameters and increased uncertainty in dose calculation and delivery. Robustness was defined as a dose distribution's sensitivity towards errors stemming from treatment uncertainties, patient setup, or anatomical changes. Results: A total of 126 radiotherapy centres from 33 countries participated, 95 of them (75%) from Europe and Central Asia. The majority controlled and evaluated plan complexity using monitor units (56 centres) and aperture shapes (38 centres). To control robustness, 98 (97% of question responses) photon and 5 (50%) proton centres used PTV margins for plan optimization while 75 (94%) and 5 (50%), respectively, used margins for plan evaluation. Seventeen (21%) photon and 8 (80%) proton centres used robust optimisation, while 10 (13%) and 8 (80%), respectively, used robust evaluation. Primary uncertainties considered were patient setup (photons and protons) and range calculation uncertainties (protons). Participants expressed the need for improved commercial tools to control and evaluate plan complexity and robustness. Conclusion: Clinical implementation of methods to control and evaluate plan complexity and robustness is very heterogeneous. Better tools are needed to manage complexity and robustness in treatment planning systems. International guidelines may promote harmonization
Causal cross-spectral analysis of heart rate and blood pressure variability for describing the impairment of the cardiovascular control in neurally mediated syncope
A causal approach to the calculation of coherence and transfer function between systolic pressure (SP) and RR interval variability was applied in eight patients and eight control subjects during prolonged tilt test for investigating the impairment of cardiovascular control related to neurally mediated syncope. The causal analysis showed a depressed baroreflex regulation in resting patients, with reduced gain and increased latency from SP to RR, and a drop of the baroreflex coupling immediately before syncope. These findings, which were not elicited by traditional cross-spectral analysis, strongly suggest the use of the causal approach for the study of syncope mechanisms. © 2006 IEEE
Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer
Abstract Purpose To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Methods and materials Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC. To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter. Results The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma). Conclusions From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed.</p
Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer
Purpose
To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation.
Methods and materials
Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC.
To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter.
Results
The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma).
Conclusions
From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed
Plan quality assessment in clinical practice:Results of the 2020 ESTRO survey on plan complexity and robustness
PURPOSE: Plan complexity and robustness are two essential aspects of treatment plan quality but there is a great variability in their management in clinical practice. This study reports the results of the 2020 ESTRO survey on plan complexity and robustness to identify needs and guide future discussions and consensus. METHODS: A survey was distributed online to ESTRO members. Plan complexity was defined as the modulation of machine parameters and increased uncertainty in dose calculation and delivery. Robustness was defined as a dose distribution's sensitivity towards errors stemming from treatment uncertainties, patient setup, or anatomical changes. RESULTS: A total of 126 radiotherapy centres from 33 countries participated, 95 of them (75%) from Europe and Central Asia. The majority controlled and evaluated plan complexity using monitor units (56 centres) and aperture shapes (38 centres). To control robustness, 98 (97% of question responses) photon and 5 (50%) proton centres used PTV margins for plan optimization while 75 (94%) and 5 (50%), respectively, used margins for plan evaluation. Seventeen (21%) photon and 8 (80%) proton centres used robust optimisation, while 10 (13%) and 8 (80%), respectively, used robust evaluation. Primary uncertainties considered were patient setup (photons and protons) and range calculation uncertainties (protons). Participants expressed the need for improved commercial tools to control and evaluate plan complexity and robustness. CONCLUSION: Clinical implementation of methods to control and evaluate plan complexity and robustness is very heterogeneous. Better tools are needed to manage complexity and robustness in treatment planning systems. International guidelines may promote harmonization
What is plan quality in radiotherapy? The importance of evaluating dose metrics, complexity, and robustness of treatment plans
Plan evaluation is a key step in the radiotherapy treatment workflow. Central to this step is the assessment of treatment plan quality. Hence, it is important to agree on what we mean by plan quality and to be fully aware of which parameters it depends on. We understand plan quality in radiotherapy as the clinical suitability of the delivered dose distribution that can be realistically expected from a treatment plan. Plan quality is commonly assessed by evaluating the dose distribution calculated by the treatment planning system (TPS). Evaluating the 3D dose distribution is not easy, however; it is hard to fully evaluate its spatial characteristics and we still lack the knowledge for personalising the prediction of the clinical outcome based on individual patient characteristics. This advocates for standardisation and systematic collection of clinical data and outcomes after radiotherapy. Additionally, the calculated dose distribution is not exactly the dose delivered to the patient due to uncertainties in the dose calculation and the treatment delivery, including variations in the patient set-up and anatomy. Consequently, plan quality also depends on the robustness and complexity of the treatment plan. We believe that future work and consensus on the best metrics for quality indices are required. Better tools are needed in TPSs for the evaluation of dose distributions, for the robust evaluation and optimisation of treatment plans, and for controlling and reporting plan complexity. Implementation of such tools and a better understanding of these concepts will facilitate the handling of these characteristics in clinical practice and be helpful to increase the overall quality of treatment plans in radiotherapy. (C) 2020 The Authors. Published by Elsevier B.V.</p