10 research outputs found

    Neuro-axonal injury in COVID-19: the role of systemic inflammation and SARS-CoV-2 specific immune response

    Get PDF
    Background: In coronavirus disease-2019 (COVID-19) patients, there is increasing evidence of neuronal injury by the means of elevated serum neurofilament light chain (sNfL) levels. However, the role of systemic inflammation and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–specific immune response with regard to neuronal injury has not yet been investigated. Methods: In a prospective cohort study, we recruited patients with mild–moderate (n = 39) and severe (n = 14) COVID-19 and measured sNfL levels, cytokine concentrations, SARS-CoV-2-specific antibodies including neutralizing antibody titers, and cell-mediated immune responses at enrollment and at 28(±7) days. We explored the association of neuro-axonal injury as by the means of sNfL measurements with disease severity, cytokine levels, and virus-specific immune responses. Results: sNfL levels, as an indicator for neuronal injury, were higher at enrollment and increased during follow-up in severely ill patients, whereas during mild–moderate COVID-19, sNfL levels remained unchanged. Severe COVID-19 was associated with increased concentrations of cytokines assessed [interleukin (IL)-6, IL-8, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α)], higher anti-spike IgG and anti-nucleocapsid IgG concentrations, and increased neutralizing antibody titers compared with mild–moderate disease. Patients with more severe disease had higher counts of defined SARS-CoV-2-specific T cells. Increases in sNfL concentrations from baseline to day 28(±7) positively correlated with anti-spike protein IgG antibody levels and with titers of neutralizing antibodies. Conclusion: Severe COVID-19 is associated with increased serum concentration of cytokines and subsequent neuronal injury as reflected by increased levels of sNfL. Patients with more severe disease developed higher neutralizing antibody titers and higher counts of SARS-CoV-2-specific T cells during the course of COVID-19 disease. Mounting a pronounced virus-specific humoral and cell-mediated immune response upon SARS-CoV-2 infection did not protect from neuro-axonal damage as by the means of sNfL levels

    The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA.1 phenotype.

    Get PDF
    Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naĂŻve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance

    The spike gene is a major determinant for the SARS-CoV-2 Omicron-BA. 1 phenotype

    Get PDF
    Variant of concern (VOC) Omicron-BA.1 has achieved global predominance in early 2022. Therefore, surveillance and comprehensive characterization of Omicron-BA.1 in advanced primary cell culture systems and animal models are urgently needed. Here, we characterize Omicron-BA.1 and recombinant Omicron-BA.1 spike gene mutants in comparison with VOC Delta in well-differentiated primary human nasal and bronchial epithelial cells in vitro, followed by in vivo fitness characterization in hamsters, ferrets and hACE2-expressing mice, and immunized hACE2-mice. We demonstrate a spike-mediated enhancement of early replication of Omicron-BA.1 in nasal epithelial cultures, but limited replication in bronchial epithelial cultures. In hamsters, Delta shows dominance over Omicron-BA.1, and in ferrets Omicron-BA.1 infection is abortive. In hACE2-knock-in mice, Delta and a Delta spike clone also show dominance over Omicron-BA.1 and an Omicron-BA.1 spike clone, respectively. Interestingly, in naĂŻve K18-hACE2 mice, we observe Delta spike-mediated increased replication and pathogenicity and Omicron-BA.1 spike-mediated reduced replication and pathogenicity, suggesting that the spike gene is a major determinant of replication and pathogenicity. Finally, the Omicron-BA.1 spike clone is less well-controlled by mRNA-vaccination in K18-hACE2-mice and becomes more competitive compared to the progenitor and Delta spike clones, suggesting that spike gene-mediated immune evasion is another important factor that led to Omicron-BA.1 dominance

    Identification of an Antiviral Compound from the Pandemic Response Box that Efficiently Inhibits SARS-CoV-2 Infection In Vitro

    Get PDF
    With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial "pandemic response box" library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2

    Establishment of a Reverse Genetic System from a Bovine Derived Influenza D Virus Isolate

    Get PDF
    The ruminant-associated influenza D virus (IDV) has a broad host tropism and was shown to have zoonotic potential. To identify and characterize molecular viral determinants influencing the host spectrum of IDV, a reverse genetic system is required. For this, we first performed 5′ and 3′ rapid amplification of cDNA ends (RACE) of all seven genomic segments, followed by assessment of the 5′ and 3′ NCR activity prior to constructing the viral genomic segments of a contemporary Swiss bovine IDV isolate (D/CN286) into the bidirectional pHW2000 vector. The bidirectional plasmids were transfected in HRT-18G cells followed by viral rescue on the same cell type. Analysis of the segment specific 5′ and 3′ non-coding regions (NCR) highlighted that the terminal 3′ end of all segments harbours an uracil instead of a cytosine nucleotide, similar to other influenza viruses. Subsequent analysis on the functionality of the 5′ and 3′ NCR in a minireplicon assay revealed that these sequences were functional and that the variable sequence length of the 5′ and 3′ NCR influences reporter gene expression. Thereafter, we evaluated the replication efficiency of the reverse genetic clone on conventional cell lines of human, swine and bovine origin, as well as by using an in vitro model recapitulating the natural replication site of IDV in bovine and swine. This revealed that the reverse genetic clone D/CN286 replicates efficiently in all cell culture models. Combined, these results demonstrate the successful establishment of a reverse genetic system from a contemporary bovine IDV isolate that can be used for future identification and characterization of viral determinants influencing the broad host tropism of IDV

    A multidimensional cross-sectional analysis of COVID-19 seroprevalence among a police officer cohort: The PoliCOV-19 study

    Get PDF
    Background Protests and police fieldwork provides a high exposure environment for SARS-CoV-2 infections. In this cross-sectional analysis, we investigated the seroprevalence among a police cohort, and sociodemographic, work and health-related factors associated with seropositivity. Methods Study participants were invited for serological testing of SARS-CoV-2 and to complete online questionnaires. Serum neutralization titres towards the wild-type SARS-CoV-2 spike protein (expressing D614G) and the alpha and beta variants were measured in seropositive study participants. Results 978 police personnel representing 35% of the entire staff participated from February to March 2021. The seroprevalence was 12.9%. It varied by geographic region within the canton; ranged from 9% to 13.5% in three regions, including the city; and was 22% in Bernese Seeland/Jura with higher odds for seropositivity (OR 2.38, 95% CI 1.28–4.44, P=0.006). Job roles with mainly office activity were associated with a lower risk of seropositivity (0.33, 0.14–0.77, P=0.010). Most seropositive employees (67.5%) reported having had COVID-19 three months or longer prior to serological testing. Selfreported compliance with mask wearing during working hours was 100%; 45% of all seropositive versus 5% of all seronegative participants (P<0.001) reported having had contact with a proven COVID-19 case living in the same household prior to serological testing. The level of serum antibody titres correlated with neutralization capacity. Antibodies derived from natural SARS-CoV-2 infection effectively neutralized the SARS-CoV-2 spike protein, but were less effective against the alpha and beta variants. Conclusions The seroprevalence of anti-SARS-CoV-2 antibodies of police officers was comparable to that reported in the general population, suggesting that the personal protective equipment of the police is effective, and that household contacts are the leading transmission venues. The level of serum antibody titres, in particular that of anti-spike antibodies, correlated well with neutralization capacity. Low antibody titres acquired from natural infection were not effective against variants

    Disparate temperature-dependent virus-host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium.

    Get PDF
    Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (37°C and 33°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host immune response dynamics, we investigated the impact of temperatures during SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses specifically induced by SARS-CoV or SARS-CoV-2, which amplitude was inversely proportional to their replication efficiencies at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies

    Susceptibility of Well-Differentiated Airway Epithelial Cell Cultures from Domestic and Wild Animals to Severe Acute Respiratory Syndrome Coronavirus 2

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2

    Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform.

    No full text
    Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak

    Enhanced fitness of SARS-CoV-2 variant of concern Alpha but not Beta.

    No full text
    Emerging variants of concern (VOC) drive the SARS-CoV-2 pandemic1,2. Experimental assessment of replication and transmission of major VOC compared to progenitors are needed to understand successful emerging mechanisms of VOC3. Here, we show that Alpha and Beta spike (S) proteins have a greater affinity to human angiotensin converting enzyme 2 (hACE2) receptor over the progenitor variant (wt-S614G) in vitro. Yet Alpha and wt-S614G had similar replication kinetics in human nasal airway epithelial cultures, whereas Beta was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over the progenitor variant (wt-S614G) in ferrets and two mouse models, where the substitutions in S were major drivers for fitness advantage. In hamsters, supporting high replication levels, Alpha and wt-S614G had comparable fitness. In contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and hACE2-expressing mice. Our study highlights the importance of using multiple models for complete fitness characterization of VOC and demonstrates adaptation of Alpha towards increased upper respiratory tract replication and enhanced transmission in vivo in restrictive models, whereas Beta fails to overcome contemporary strains in naĂŻve animals
    corecore