70 research outputs found
The evolution of inverted magnetic fields through the inner heliosphere
Local inversions are often observed in the heliospheric magnetic field (HMF), but their origins and evolution are not yet fully understood.Parker Solar Probe has recently observed rapid, Alfvénic, HMF inversions in the inner heliosphere, known as ‘switchbacks’, which have been interpreted as the possible remnants of coronal jets. It has also been suggested that inverted HMF may be produced by near-Sun interchange reconnection; a key process in mechanisms proposed for slow solar wind release. These cases suggest that the source of inverted HMF is near the Sun, and it follows that these inversions would gradually decay and straighten as they propagate out through the heliosphere. Alternatively, HMF inversions could form during solar wind transit, through phenomena such velocity shears, draping over ejecta, or waves and turbulence. Such processes are expected to lead to a qualitatively radial evolution of inverted HMF structures. Using Helios measurements spanning 0.3–1 AU, we examine the occurrence rate of inverted HMF, as well as other magnetic field morphologies, as a function of radial distance r, and find that it continually increases. This trend may be explained by inverted HMF observed between 0.3–1 AU being primarily driven by one or more of the above in-transit processes, rather than created at the Sun. We make suggestions as to the relative importance of these different processes based on the evolution of the magnetic field properties associated with inverted HMF. We also explore alternative explanations outside of our suggested driving processes which may lead to the observed trend
An Ecological, Cultural, and Legal Review of Pacific Lamprey in the Columbia River Basin
Pacific lamprey (Entosphenus tridentatus) is an anadromous species in an ancient lineage of jawless fishes. The species is native to the North Pacific and its marine-accessible freshwater rivers and streams. Pacific lamprey are understudied relative to other anadromous fishes and has severely declined in abundance throughout the Columbia River Basin. Indigenous people of the Snake and Columbia River Basins have long recognized the ecological role and value of lamprey through their spiritual and cultural practices connected to Pacific lamprey. The combined effects of poor passage at dams, historic and continued habitat degradation, and altered marine host conditions have contributed to the observed decline in abundance and distribution. The unique characteristics and management history have placed Pacific lamprey in a legal and cultural grey area and provide a useful foil to Pacific salmon in considering protections for migratory fish. Here we provide a review of legal protections and recovery actions throughout the Columbia River Basin, including an analysis of the Fish and Wildlife Service’s 2004 denial of a petition to list Pacific lamprey under the Endangered Species Act. The current patchwork of measures fails to provide integrated protections across the life history of the species. This stems from a complex lifecycle spanning dozens of local, state, tribal, federal, and international jurisdictions as well as a cultural legacy of lamprey being considered trash fish by western society and early fishery managers. However, recent shifts in perceptions about the ecological value of the species and increased co-management of anadromous species within the Columbia River Basin have elevated the species as a management priority. Continued efforts to conserve and recover Pacific lamprey pose a complex and honorable challenge for fisheries managers within the Columbia River Basin
Continuing Change in a Virtual World: Training and Recruiting Instructors
The process of teacher identification, selection, initial training, and on-going professional development that has developed at the Illinois Virtual High School (IVHS) over the past seven years is described and discussed in this article. Validation was based upon existing practices and research. To provide background the creation and initial development of the IVHS is described. Some of the issues within the hiring process and professional development that the IVHS continues to struggle are examined including teacher certification and the changing nature of technology. The paper concludes with a recommendation that teacher education programs assist in addressing these challenges to support IVHS and other virtual schools
Direct activation of NADPH oxidase 2 by 2-deoxyribose-1-phosphate triggers nuclear factor kappa B-dependent angiogenesis.
AbstractAims: Deoxyribose-1-phosphate (dRP) is a proangiogenic paracrine stimulus released by cancer cells, platelets, and macrophages and acting on endothelial cells. The objective of this study was to clarify how dRP stimulates angiogenic responses in human endothelial cells.Results: Live cell imaging, electron paramagnetic resonance, pull-down of dRP-interacting proteins, followed by immunoblotting, gene silencing of different NADPH oxidases (NOXs), and their regulatory cosubunits by small interfering RNA (siRNA) transfection, and experiments with inhibitors of the sugar transporter glucose transporter 1 (GLUT1) were utilized to demonstrate that dRP acts intracellularly by directly activating the endothelial NOX2 complex, but not NOX4. Increased reactive oxygen species generation in response to NOX2 activity leads to redox-dependent activation of the transcription factor nuclear factor kappa B (NF-κB), which, in turn, induces vascular endothelial growth factor receptor 2 (VEGFR2) upregulation. Using endothelial tube formation assays, gene silencing by siRNA, and antibody-based receptor inhibition, we demonstrate that the activation of NF-κB and VEGFR2 is necessary for the angiogenic responses elicited by dRP. The upregulation of VEGFR2 and NOX2-dependent stimulation of angiogenesis by dRP were confirmed in excisional wound and Matrigel plug vascularization assays in vivo using NOX2−/− mice.Innovation: For the first time, we demonstrate that dRP acts intracellularly and stimulates superoxide anion generation by direct binding and activation of the NOX2 enzymatic complex.Conclusions: This study describes a novel molecular mechanism underlying the proangiogenic activity of dRP, which involves the sequential activation of NOX2 and NF-κB and upregulation of VEGFR2. Antioxid. Redox Signal. 28, 110–130
It’s a long shot, but it just might work! Perspectives on the future of medicine
Abstract What does the future of medicine hold? We asked six researchers to share their most ambitious and optimistic views of the future, grounded in the present but looking out a decade or more from now to consider what’s possible. They paint a picture of a connected and data-driven world in which patient value, patient feedback, and patient empowerment shape a continually learning system that ensures each patient’s experience contributes to the improved outcome of every patient like them, whether it be through clinical trials, data from consumer devices, hacking their medical devices, or defining value in thoughtful new ways
Recommended from our members
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets
Impact of Donor Milk on Short- and Long-Term Growth of Very Low Birth Weight Infants
Mother’s own milk (MOM) reduces the risk of morbidities in very low birth weight (VLBW) infants. When MOM is unavailable, donor breastmilk (DM) is used, with unclear impact on short- and long-term growth. This retrospective analysis compared anthropometric data at six time points from birth to 20–24 months corrected age in VLBW infants who received MOM supplements of preterm formula (n = 160) versus fortified DM (n = 161) during neonatal intensive care unit (NICU) hospitalization. The cohort was 46% female; mean birth weight and gestational age (GA) were 998 g and 27.3 weeks. Multilevel linear growth models assessed changes in growth z-scores short-term (to NICU discharge) and long-term (post-discharge), controlling for amount of DM or formula received in first 28 days of life, NICU length of stay (LOS), birth GA, and sex. Z-scores for weight and length decreased during hospitalization but increased for all parameters including head circumference post-discharge. Short-term growth was positively associated with LOS and birth GA. A higher preterm formula proportion, but not DM proportion, was associated with slower rates of decline in short-term growth trajectories, but feeding type was unrelated to long-term growth. In conclusion, controlling for total human milk fed, DM did not affect short- or long-term growth
Crystal structure and equation of state of Fe-Si alloys at super-Earth core conditions
The high-pressure behavior of Fe alloys governs the interior structure and dynamics of super-Earths, rocky extrasolar planets that could be as much as 10 times more massive than Earth. In experiments reaching up to 1300 GPa, we combine laser-driven dynamic ramp compression with in situ x-ray diffraction to study the effect of composition on the crystal structure and density of Fe-Si alloys, a potential constituent of super-Earth cores. We find that Fe-Si alloy with 7 weight % (wt %) Si adopts the hexagonal close-packed structure over the measured pressure range, whereas Fe-15wt%Si is observed in a body-centered cubic structure. This study represents the first experimental determination of the density and crystal structure of Fe-Si alloys at pressures corresponding to the center of a ~3–Earth mass terrestrial planet. Our results allow for direct determination of the effects of light elements on core radius, density, and pressures for these planets
Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans
This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities
- …