67 research outputs found

    Innovative Rural Development Initiatives

    Get PDF
    This Interim Report provides first results from case studies of innovative rural development initiatives in Europe. They were conducted by IIASA's European Rural Development (ERD) project during 2001 -- primarily to test the feasibility of the research concept and to get a first realistic impression of rural development problems and possibilities at the IDeal level. These reports are only the first round of a much larger sample of some 40 to 50 case studies, which are planned for the next two years. The results from these initial investigations will be used to streamline the research procedure for the larger sample of case studies. The rural development initiatives in this report include the following projects: a project to promote direct marketing of organic farming products in Eastern Germany ("Scheunenhof"); an eco-tourism project in Estonia ("Viljandimaa"); a Hungarian project to promote environmental protection and tourism ("SPANC"); an EU-network project to promote integrated participatory planning in Finland, Sweden and Norway ("CROSSPLAN"); a private imitative to establish a rural high-tech company in Carinthia, Austria ("me.chanic"); a project in Finland to improve the social competence and labor qualifications of rural delinquents ("KEHYPAJA"); the project of a Swedish farmer to build a small-scale wind power plant ("PITCH WIND"); and the initiatives of a mother and son in a small Polish village to start a farm-tourism agency and an eco-technology center ("Sunflower Farm")

    Bichromatic UV detection system for atomically-resolved imaging of ions

    Full text link
    We present a compact and bichromatic imaging system, located outside of the vacuum chamber of a trapped ion apparatus, that collects the fluorescence of 230.6 nm and 369.5 nm photons simultaneously on a shared EMCCD camera. The system contains two lens doublets, consisting of a sphere and an asphere. It provides a numerical aperture of 0.45 and 0.40 at 230.6 nm and 369.5 nm, respectively, and enables spatially resolved state detection with a large field of view of 300 μ\mum for long 115^{115}In+^+/172^{172}Yb+^+ Coulomb crystals. Instead of diffraction limited imaging for one wavelength, the focus in this system is on simultaneous single-ion resolved imaging of both species over a large field with special attention to the deep UV wavelength (230.6 nm) and the low scattering rate of In+^+ ions. The introduced concept is applicable to other dual-species applications

    Human cytomegalovirus evades ZAP detection by suppressing CpG dinucleotides in the major immediate early 1 gene

    Get PDF
    The genomes of RNA and small DNA viruses of vertebrates display significant suppression of CpG dinucleotide frequencies. Artificially increasing dinucleotide frequencies results in substantial attenuation of virus replication, suggesting that these compositional changes may facilitate recognition of non-self RNA sequences. Recently, the interferon inducible protein ZAP, was identified as the host factor responsible for sensing CpG in viral RNA, through direct binding and possibly downstream targeting for degradation. Using an arrayed interferon stimulated gene expression library screen, we identified ZAPS, and its associated factor TRIM25, as inhibitors of human cytomegalovirus (HCMV) replication. Exogenous expression of ZAPS and TRIM25 significantly reduced virus replication while knockdown resulted in increased virus replication. HCMV displays a strikingly heterogeneous pattern of CpG representation with specific suppression of CpG motifs within the IE1 major immediate early transcript which is absent in subsequently expressed genes. We demonstrated that suppression of CpG dinucleotides in the IE1 gene allows evasion of inhibitory effects of ZAP. We show that acute virus replication is mutually exclusive with high levels of cellular ZAP, potentially explaining the higher levels of CpG in viral genes expressed subsequent to IE1 due to the loss of pressure from ZAP in infected cells. Finally, we show that TRIM25 regulates alternative splicing between the ZAP short and long isoforms during HCMV infection and interferon induction, with knockdown of TRIM25 resulting in decreased ZAPS and corresponding increased ZAPL expression. These results demonstrate for the first time that ZAP is a potent host restriction factor against large DNA viruses and that HCMV evades ZAP detection through suppression of CpG dinucleotides within the major immediate early 1 transcript. Furthermore, TRIM25 is required for efficient upregulation of the interferon inducible short isoform of ZAP through regulation of alternative splicing

    Human metapneumovirus driven IFN-β production antagonizes macrophage transcriptional induction of IL1-β in response to bacterial pathogens

    Get PDF
    Human metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied. Type I interferons (IFNs), while critical for antiviral defenses, may often have detrimental effects by skewing the host immune response and cytokine output of immune cells. It is currently unknown if HMPV skews the inflammatory response in human macrophages triggered by bacterial stimuli. Here we report that HMPV pre-infection impacts production of specific cytokines. HMPV strongly suppresses IL-1β transcription in response to LPS or heat-killed Pseudomonas aeruginosa and Streptococcus pneumonia, while enhancing mRNA levels of IL-6, TNF-α and IFN-β. We demonstrate that in human macrophages the HMPV-mediated suppression of IL-1β transcription requires TANK-binding kinase 1 (TBK1) and signaling via the IFN-β-IFNAR axis. Interestingly, our results show that HMPV pre-infection did not impair the LPS-stimulated activation of NF-κB and HIF-1α, transcription factors that stimulate IL-1β mRNA synthesis in human cells. Furthermore, we determined that sequential HMPV-LPS treatment resulted in accumulation of the repressive epigenetic mark H3K27me3 at the IL1B promoter. Thus, for the first time we present data revealing the molecular mechanisms by which HMPV shapes the cytokine output of human macrophages exposed to bacterial pathogens/LPS, which appears to be dependent on epigenetic reprogramming at the IL1B promoter leading to reduced synthesis of IL-1β. These results may improve current understanding of the role of type I IFNs in respiratory disease mediated not only by HMPV, but also by other respiratory viruses that are associated with superinfections.</p

    Human metapneumovirus driven IFN-β production antagonizes macrophage transcriptional induction of IL1-β in response to bacterial pathogens

    Get PDF
    Human metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied. Type I interferons (IFNs), while critical for antiviral defenses, may often have detrimental effects by skewing the host immune response and cytokine output of immune cells. It is currently unknown if HMPV skews the inflammatory response in human macrophages triggered by bacterial stimuli. Here we report that HMPV pre-infection impacts production of specific cytokines. HMPV strongly suppresses IL-1β transcription in response to LPS or heat-killed Pseudomonas aeruginosa and Streptococcus pneumonia, while enhancing mRNA levels of IL-6, TNF-α and IFN-β. We demonstrate that in human macrophages the HMPV-mediated suppression of IL-1β transcription requires TANK-binding kinase 1 (TBK1) and signaling via the IFN-β-IFNAR axis. Interestingly, our results show that HMPV pre-infection did not impair the LPS-stimulated activation of NF-κB and HIF-1α, transcription factors that stimulate IL-1β mRNA synthesis in human cells. Furthermore, we determined that sequential HMPV-LPS treatment resulted in accumulation of the repressive epigenetic mark H3K27me3 at the IL1B promoter. Thus, for the first time we present data revealing the molecular mechanisms by which HMPV shapes the cytokine output of human macrophages exposed to bacterial pathogens/LPS, which appears to be dependent on epigenetic reprogramming at the IL1B promoter leading to reduced synthesis of IL-1β. These results may improve current understanding of the role of type I IFNs in respiratory disease mediated not only by HMPV, but also by other respiratory viruses that are associated with superinfections

    Interferon-stimulated gene (ISG)-expression screening reveals the specific antibunyaviral activity of ISG20

    Get PDF
    Bunyaviruses pose a significant threat to human health, prosperity and food security. In response to viral infections, interferons (IFNs) upregulate the expression of hundreds of interferon stimulated genes (ISGs) whose cumulative action can potently inhibit the replication of bunyaviruses. We used a flow cytometry-based method to screen the ability of ∼500 unique ISGs from humans and rhesus macaques to inhibit the replication of Bunyamwera orthobunyavirus (BUNV), the prototype of both the Peribunyaviridae family and Bunyavirales order. Candidates possessing antibunyaviral activity were further examined using a panel of divergent bunyaviruses. Interestingly, one candidate, ISG20, exhibited potent antibunyaviral activity against most viruses examined from the Peribunyaviridae, Hantaviridae and Nairoviridae families, whereas phleboviruses (Phenuiviridae) largely escaped inhibition. Similar to other viruses known to be targeted by ISG20, the antibunyaviral activity of ISG20 is dependent upon its functional ribonuclease activity. Through use of an infectious VLP assay (based on the BUNV minigenome system), we confirmed that gene expression from all 3 viral segments is strongly inhibited by ISG20. Using in vitro evolution, we generated a substantially ISG20-resistant BUNV and mapped the determinants of ISG20 sensitivity/resistance. Taken together, we report that ISG20 is a broad and potent antibunyaviral factor yet some bunyaviruses are remarkably ISG20 resistant. Thus, ISG20 sensitivity/resistance could influence the pathogenesis of bunyaviruses, many of which are emerging viruses of clinical or veterinary significance

    Resurrection of 2′-5′-oligoadenylate synthetase 1 (OAS1) from the ancestor of modern horseshoe bats blocks SARS-CoV-2 replication

    Get PDF
    The prenylated form of the human 2′-5′-oligoadenylate synthetase 1 (OAS1) protein has been shown to potently inhibit the replication of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. However, the OAS1 orthologue in the horseshoe bats (superfamily Rhinolophoidea), the reservoir host of SARS-related coronaviruses (SARSr-CoVs), has lost the prenylation signal required for this antiviral activity. Herein, we used an ancestral state reconstruction approach to predict and reconstitute in vitro, the most likely OAS1 protein sequence expressed by the Rhinolophoidea common ancestor prior to its prenylation loss (RhinoCA OAS1). We exogenously expressed the ancient bat protein in vitro to show that, unlike its non-prenylated horseshoe bat descendants, RhinoCA OAS1 successfully blocks SARS-CoV-2 replication. Using protein structure predictions in combination with evolutionary hypothesis testing methods, we highlight sites under unique diversifying selection specific to OAS1’s evolution in the Rhinolophoidea. These sites are located near the RNA-binding region and the C-terminal end of the protein where the prenylation signal would have been. Our results confirm that OAS1 prenylation loss at the base of the Rhinolophoidea clade ablated the ability of OAS1 to restrict SARSr-CoV replication and that subsequent evolution of the gene in these bats likely favoured an alternative function. These findings can advance our understanding of the tightly linked association between SARSr-CoVs and horseshoe bats

    The apparent interferon resistance of transmitted HIV-1 is possibly a consequence of enhanced replicative fitness

    Get PDF
    HIV-1 transmission via sexual exposure is an inefficient process. When transmission does occur, newly infected individuals are colonized by the descendants of either a single virion or a very small number of establishing virions. These transmitted founder (TF) viruses are more interferon (IFN)-resistant than chronic control (CC) viruses present 6 months after transmission. To identify the specific molecular defences that make CC viruses more susceptible to the IFN-induced ‘antiviral state’, we established a single pair of fluorescent TF and CC viruses and used arrayed interferon-stimulated gene (ISG) expression screening to identify candidate antiviral effectors. However, we observed a relatively uniform ISG resistance of transmitted HIV-1, and this directed us to investigate possible underlying mechanisms. Simple simulations, where we varied a single parameter, illustrated that reduced growth rate could possibly underly apparent interferon sensitivity. To examine this possibility, we closely monitored in vitro propagation of a model TF/CC pair (closely matched in replicative fitness) over a targeted range of IFN concentrations. Fitting standard four-parameter logistic growth models, in which experimental variables were regressed against growth rate and carrying capacity, to our in vitro growth curves, further highlighted that small differences in replicative growth rates could recapitulate our in vitro observations. We reasoned that if growth rate underlies apparent interferon resistance, transmitted HIV-1 would be similarly resistant to any growth rate inhibitor. Accordingly, we show that two transmitted founder HIV-1 viruses are relatively resistant to antiretroviral drugs, while their matched chronic control viruses were more sensitive. We propose that, when present, the apparent IFN resistance of transmitted HIV-1 could possibly be explained by enhanced replicative fitness, as opposed to specific resistance to individual IFN-induced defences. However, further work is required to establish how generalisable this mechanism of relative IFN resistance might be

    In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2

    Get PDF
    Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (&gt;800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance
    • …
    corecore