87 research outputs found

    Low-ILUC-risk rapeseed biodiesel:potential and indirect GHG emission effects in Eastern Romania

    Get PDF
    Indirect land-use change (ILUC) can have a severe impact on the greenhouse gas (GHG) balance of biofuels. Mitigating ILUC risk is important to avoid additional GHG emissions compared to fossil fuels. This is possible by making surplus land available through land demand reduction and using this for low-ILUC-risk biodiesel production. For a case study in Eastern Romania, we calculated the rapeseed biodiesel potential and the GHG emissions of four measures to make surplus land available in 2020. Four scenarios varying in assumptions on productivity and sustainability in the agricultural sector show the variation in the potential of these measures. We find that using surplus land to produce low-ILUC-risk rapeseed biodiesel has a potential of 3-64 PJ, 1-28% of the projected Romanian transport diesel consumption. The main contribution to this potential comes from yield improvements in crop and livestock production. Average GHG emissions of the ILUC mitigation measures are -11 to 22 g CO2-eq MJ−1 (maximum total lifecycle emissions are 34 g CO2-eq MJ−1; 60% reduction from fossil fuel reference). This means ILUC mitigation is possible without necessarily missing the GHG emission reduction target, provided that the entire agricultural sector is sustainably intensified, going beyond a focus on biofuel production alone

    Projecting socio-economic impacts of bioenergy:Current status and limitations of ex-ante quantification methods

    Get PDF
    The socio-economic effects of bio-energy are not unequivocally positive, although it is one of the main arguments for supporting its expansion. An ex-ante quantification of the impacts is necessary for transparently presenting the benefits and burdens of bioenergy before they occur, and for minimising unwanted outcomes. In this article, the status, limitations, and possibilities for improvements in ex-ante quantitative research methods for investigating socio-economic impacts of bioenergy are mapped. For this, a literature review to identify relevant indicators, analyse the latest quantitative ex-ante research methods, and to assess their ability and suitability to measure these indicators was performed. The spatial aggregation of existing analyses was specifically considered because quantitative information on different spatial scales shows the geographic distribution of the effects. From the 236 indicators of socio-economic impacts spread over twelve impact categories that were found in this review, it becomes evident that there are clear differences in the ex-ante quantification of these indicators. The review shows that some impact categories receive more attention in ex-ante quantification studies, such as project-level economic feasibility and national-level macroeconomic impacts, while other relevant indicators have not been ex-ante quantified, such as community impacts and public acceptance. Moreover, a key blind spot regarding food security impacts was identified in the aggregation level at which food security impacts are quantified, which does not match the level at which the impacts occur. The review also shows that much more can be done in terms of ex-ante quantification of these impacts. Specifically, spatial disaggregation of models and model collaboration can extend the scope of socio-economic analyses. This is demonstrated for food security impacts, which shows the potential for future household-level analysis of food security impacts on all four pillars of food security

    The implications of geopolitical, socioeconomic, and regulatory constraints on European bioenergy imports and associated greenhouse gas emissions to 2050

    Get PDF
    Modern sustainable bioenergy can contribute toward mid-century European energy decarbonization targets by replacing fossil fuels. Fulfilling this role would require access to increased volumes of bioenergy, with extra-EU imports projected to play an important part. Access to this resource on the international marketplace is not governed by Europe's economic competitiveness alone. This study investigates geopolitical, socioeconomic, and regulatory considerations that can influence Europe's bioenergy imports but that are so far underexplored. The effect of these constraints on European import volumes, sourcing regions, mitigation potential, and their implications for European and global emissions is projected to the year 2050 using a global integrated assessment model. The projections show that Europe can significantly increase imports from 1.5 EJ year−1 in 2020 to 8.1 EJ year−1 by 2050 whilst remaining compliant with Renewables Energy Directive recast II (RED II) greenhouse gas (GHG) criteria. Under these conditions, bioenergy could provide annual GHG mitigation of 0.44 GtCO2eq. in 2050. However, achieving this would require a structural diversification of trading partners from the present. Furthermore, socioeconomic and logistical concerns may limit the feasibility of some of the projected major sourcing regions, including Africa and South America. Failure to overcome these challenges within supplying regions could limit European imports by 60%, reducing annual mitigation to 0.16 GtCO2eq. in 2050. From a global perspective, regions with a comparatively carbon-intense energy system offer an alternative destination for globally traded biomass that could increase the mitigative potential of bioenergy

    The distribution of food security impacts of biofuels, a Ghana case study

    Get PDF
    The demand for biofuels is expected to increase significantly in the coming years. However, there are major concerns on the impact of increased biofuel production on food security. As biofuel affects food security in various ways, it is important to assess the impacts on the four pillars of food security, availability, access, utilisation and stability. The objective of this study is to ex-ante quantify impacts of biofuel production on the four pillars of food security for urban and rural households in a developing country. We illustrate this for Ghana, which proposed a 10% biodiesel and 15% ethanol mandate for 2030 and which faces food security issues. We used the computable general equilibrium (CGE) model MAGNET in combination with a household and a nutrition module to quantify 13 food security indicators. The results show that the largest food security effects of the biofuel mandate are negative impacts on food prices and import dependency. However, the projected food security impacts of the biofuel mandate in 2030 are relatively small compared to the projected food security effects of economic development in Ghana towards 2030. Our approach enables ex-ante quantification of the effects of biofuel on the four pillars of food security and the differentiation of the effects between urban and rural households. Although improvements can be made, the approach means a big step forward compared to the state-of-the-art knowledge on food security impacts of biofuel production and it could contribute to identify options to minimise negative and optimise positive food security effects

    Greenhouse gas emission curves for advanced biofuel supply chains

    Get PDF
    Most climate change mitigation scenarios that are consistent with the 1.5–2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr−1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr−1 for emission factors less than 60 kgCO2e GJBiofuel −1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity

    GHG Balance of Agricultural Intensification & Bioenergy Production in the Orinoquia Region, Colombia

    Get PDF
    Energy crop expansion can increase land demand and generate displacement of food crops, which impacts greenhouse gas (GHG) emissions mainly through land-use change (LUC). Increased agricultural productivity could compensate for this. Our study aims to evaluate the regional combined GHG emissions of increasing agricultural yields for food crop and beef production and using the generated surplus land for biomass production to replace fossil fuels in the Orinoquia region of Colombia until 2030. The results show that surplus land for biomass production is obtained only when strong measures are applied to increase agricultural productivity. In the medium and high scenario, a land surplus of 0.6 and 2.4 Mha, respectively, could be generated. Such intensification results in up to 83% emission reduction in Orinoquia’s agricultural sector, largely coming from increasing productivity of cattle production and improving degraded pastures. Biofuel potential from the surplus land is projected at 36 to 368 PJ per year, with a low risk of causing indirect LUC, and results in GHG emission reductions of more than 100% compared to its fossil fuel equivalent. An integrated perspective of the agricultural land use enables sustainable production of both food and bioenergy

    Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region

    Get PDF
    Agricultural intensification is a key strategy to help meet increasing demand for food and bioenergy. It has the potential to reduce direct and indirect land use change (LUC) and associated environmental impacts while contributing to a favorable economic performance of the agriculture sector. We conduct an integral analysis of environmental and economic impacts of LUC from projected agricultural intensification and bioenergy production in the Orinoquia region in 2030. We compare three agricultural intensification scenarios (low, medium, high) and a reference scenario, which assumes a business-as-usual development of agricultural production. The results show that with current inefficient management or with only very little intensification between 26% and 93% of the existing natural vegetation areas will be converted to agricultural land to meet increasing food demand. This results in the loss of biodiversity by 53% and increased water consumption by 111%. In the medium and high scenarios, the intensification allows meeting increased food demand within current agricultural lands and even generating surplus land which can be used to produce bioenergy crops. This results in the reduction of biodiversity loss by 8-13% with medium and high levels of intensification compared to the situation in 2018. Also, a positive economic performance is observed, stemming primarily from intensification of cattle production and additional energy crop production. Despite increasing irrigation efficiency in more intensive production systems, the water demand for perennial crops and cattle production over the dry season increases significantly, thus sustainable management practices that target efficient water use are needed. Agricultural productivity improvements, particularly for cattle production, are crucial for reducing the pressure on natural areas from increasing demand for both food products and bioenergy. This implies targeted investments in the agricultural sector and integrated planning of land use. Our results showed that production intensification in the Orinoquia region is a mechanism that could reduce the pressure on natural land and its associated environmental and economic impacts

    Methods for Analysing Steering Effects of Global Goals

    Get PDF
    This chapter provides an overview of the multi-faceted landscape of methods used to study the steering effects of the Sustainable Development Goals. After a discussion of the political use of science and the complex relations between science and politics, the chapter showcases a selection of different methods that are employed to trace the steering effects of the Sustainable Development Goals. Selecting the most suitable method for a particular research question requires understanding their main characteristics, strengths and weaknesses. The chapter highlights that all methods and tools need to be combined to comprehensively assess the political impact of the goals, the progress towards their achievement, and their overall transformative potential. As data gaps and unequal geographical coverage still hamper a broader understanding of the political impact of the globalgoals, we need to build bridges across language communities, disciplines and methodological camps, which still work very much in isolation
    corecore