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A B S T R A C T

The socio-economic effects of bio-energy are not unequivocally positive, although it is one of the main argu-
ments for supporting its expansion. An ex-ante quantification of the impacts is necessary for transparently
presenting the benefits and burdens of bioenergy before they occur, and for minimising unwanted outcomes. In
this article, the status, limitations, and possibilities for improvements in ex-ante quantitative research methods
for investigating socio-economic impacts of bioenergy are mapped. For this, a literature review to identify re-
levant indicators, analyse the latest quantitative ex-ante research methods, and to assess their ability and suit-
ability to measure these indicators was performed. The spatial aggregation of existing analyses was specifically
considered because quantitative information on different spatial scales shows the geographic distribution of the
effects. From the 236 indicators of socio-economic impacts spread over twelve impact categories that were found
in this review, it becomes evident that there are clear differences in the ex-ante quantification of these indicators.
The review shows that some impact categories receive more attention in ex-ante quantification studies, such as
project-level economic feasibility and national-level macroeconomic impacts, while other relevant indicators
have not been ex-ante quantified, such as community impacts and public acceptance. Moreover, a key blind spot
regarding food security impacts was identified in the aggregation level at which food security impacts are
quantified, which does not match the level at which the impacts occur. The review also shows that much more
can be done in terms of ex-ante quantification of these impacts. Specifically, spatial disaggregation of models and
model collaboration can extend the scope of socio-economic analyses. This is demonstrated for food security
impacts, which shows the potential for future household-level analysis of food security impacts on all four pillars
of food security.

1. Introduction

Modern bioenergy is seen as a solution to mitigate climate change,
increase energy independence, and stimulate the economy [1–3]. The
scientific and political debate on bioenergy has primarily focused on
climate change and other environmental impacts of bioenergy (e.g.
Refs. [4,5]); however, socio-economic development is an integral aspect
of sustainable development and should be considered in this context as
well [6–8]. Although countries with a bioenergy mandate expect
bioenergy to contribute to a number of socio-economic goals, such as
domestic energy security, job creation, and rural development [1,9],
the socio-economic impacts of bioenergy are not unequivocally positive
[10–13]. Previous studies have identified negative socio-economic im-
pacts, such as competition with food production and disregard for local
land rights [9,14–16].

Hence, principles and certification schemes for sustainable bioe-
nergy feedstock production and conversion have been introduced to
avoid negative impacts of bioenergy [17–19]. Certification schemes,
like the Roundtable on Sustainable Biomaterials (RSB) [20–22],
Roundtable on Responsible Soy [23], and Bonsucro [24] have set sus-
tainability standards that need to be met by producers. Although these
certification schemes include socio-economic impacts of bioenergy,
they focus more on the environmental impacts [17,25–28]. Further, the
principles on socio-economic impacts are often formulated as general
principles that are vague and cannot always be quantified
[11,25–27,29]. For example, multiple certification schemes (e.g. Refs.
[24,30]) have set employees’ freedom from discrimination as one of
their criteria. The availability of a company policy document against
discrimination is enough to meet the criteria, without a requirement for
measuring whether discrimination actually takes place. However,
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quantitative information on the size of the impacts helps understand the
scale of an effect and to transparently weigh the positive and negative
aspects of bioenergy implementation [11,31,32]. The quantitative in-
formation on the socio-economic effects of bioenergy using objective
measurements of the socio-economic impacts can then help facilitate
and inform the decision-making processes [29,33,34].

Studying the present and past bioenergy projects to determine
success factors and barriers can help stimulate the sustainable pro-
duction of bioenergy. Despite that, to avoid negative impacts or overly
optimistic expectations [1,35], the direction and magnitude of the
socio-economic impacts of the future development of bioenergy needs
to be assessed before actual production. Ex-ante knowledge of the po-
tential positive and negative impacts of bioenergy and the balance
between the two enables policymakers to minimise undesirable im-
pacts.

Although there is consensus on the key socio-economic areas of
concern regarding bioenergy [11,17,18,36], there is less agreement on
the indicators that could and should be used to measure the socio-
economic performance of bioenergy supply chains [10,17,29,37,38].
The impacts of bioenergy are diverse and cannot be characterised with
a single comprehensive value. Therefore, each potential socio-economic
impact is described by multiple indicators that account for the various
dimensions of each socio-economic impact [11,39–41]. Securing a
consensus on the clear indicators of potential socio-economic impacts
can help formulate sustainability criteria and measure compliance [38].
This helps promote the overall sustainability of bioenergy [29,38,42].

The socio-economic impacts of bioenergy are not evenly distributed
geographically. The impacts at the spatial aggregation level must be
considered when including the geographic distribution of the socio-
economic impacts in an analysis [11,43–46]. Assessing socio-economic
effects at a high aggregation level can obscure regional variation, be-
cause the average would smoothen the regional differences, making it
impossible to consider the distribution of the effect [47,48]. In contrast
focussing only on the effects of a specific bioenergy project in the
production region itself would neglect the effects that occur outside that
area [49]. Furthermore, a focus on only the region with bioenergy ig-
nores the effects that are indirectly caused by bioenergy (e.g. reduced
demand in sectors supplying to the fossil fuel industry) and the cu-
mulative effects of multiple bioenergy projects in a country, such as
effects on food prices. The potential effects need to be analysed at
various spatial scales to be able to comprehensively capture the socio-
economic impacts of bioenergy. Information on the spatial distribution
of the socio-economic effects can help avoid a disproportionate accu-
mulation of negative impacts in a specific area.

Ex-ante assessment of the socio-economic impacts of bioenergy re-
quires using methods and models that translate scenarios and as-
sumptions of bioenergy implementation to effects on the various in-
dicators. The selection of a method or combination of methods is
important for the quantification of the impacts, as all methods have
specific strengths and weaknesses, which affect their ability and suit-
ability to quantify the socio-economic indicators. Such methods vary on
some aspects, such as the indicators to be quantified, data inputs re-
quired, inclusion of indirect effects, and spatial scales to be included.
This means the selection of a method also affects the final outcome of
the assessment [50]. Currently, there is no overview of the available
methods for quantitative ex-ante assessment of socio-economic impacts

at different spatial scales and an assessment of their suitability and
ability that would help identify the blind spots and associated knowl-
edge gaps.

The shortcomings discussed above hinder agreement on the ap-
propriate indicators of the socio-economic impacts of bioenergy at the
relevant scales and the methodology for their quantification. Therefore,
this paper aims to map the current status of quantitative ex-ante re-
search on the socio-economic impacts of bioenergy, its limitations, and
options for improvement. For this, a literature review is performed, to
identify relevant indicators, analyse the latest ex-ante quantification
methods and tools, and assess their ability and suitability to assess these
indicators at different spatial scales.

2. Material and method

The approach for this literature review consists of two parts. In the
first part, relevant indicators of the socio-economic impacts of bioe-
nergy were selected. In the second part, available methods and their
ability and suitability to quantify the relevant socio-economic impacts
at different spatial levels were identified.

The first step was to make an overview of the socio-economic im-
pacts of bioenergy based on previous reviews of sustainability criteria
for bioenergy (e. g. Refs. [1,11,51,52]). This overview made it possible
to later cluster the indicators per impact and to identify potential blind
spots where no relevant indicators are available for an identified im-
pact. The impacts that were mentioned in at least two different studies
were included as the list was meant to be exhaustive, but not too dis-
aggregated.

Those indicators of socio-economic impacts of bioenergy were
considered relevant for ex-ante quantification if they a) reflect the ef-
fects1 of bioenergy b) are included in certification schemes or agreed
upon in stakeholder consultation processes, and c) can be assigned a
numerical value. Certification schemes and stakeholder consultations
represent the indicators that the public, policymakers, companies, and
other stakeholders consider most important [53]. To obtain the list of
relevant indicators, an overview was made of all indicators of the socio-
economic impacts of bioenergy that were identified in the previous step
based on the previous studies, as well as the certification schemes and
standards for good practices (e.g. Refs. [21,30,54,55]).

Similar indicators were merged into one indicator to avoid dupli-
cation. To cull a long-list of indicators to a list of relevant indicators,
those indicators that did not meet the following criteria for relevance
were removed (as illustrated in Fig. 1):

1) the indicators that reflect an attribute of the bioenergy project, ra-
ther than an impact, conform Meyer et al. [19].

2) the indicators that require a qualitative assessment, and
3) the indicators that have not been included in a certification scheme

or named by stakeholders in a stakeholder consultation process.

In the second part, the studies were reviewed that quantified ex-ante
the socio-economic impacts of bioenergy to get an overview of available
methods and the spatial level at which these are used. Studies quanti-
fying one or more socio-economic impacts of bioenergy were selected
using the Scopus search engine in April 2018. Only studies published
after 2014 were selected, to include only the most recent literature. The
used search terms included the name of each impact and terms related
to the list of relevant indicators (for a complete overview, see Table

Abbreviations

CGE Computable General Equilibrium
IO Input output
PE Partial Equilibrium
SAM Social Accounting Matrix
(s)LCA (social) Life Cycle Assessment

1 This is analogous to the categorisation of Meyer et al. [19] who assessed the
environmental indicators of bioenergy certification schemes. Since some studies
and certification schemes are designed to assess the sustainability of an ongoing
project, they contain indicators that reflect properties of management or pro-
duction (e.g. the availability of a management plan), rather than the impacts of
bioenergy.
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A.1). These were combined with the terms ‘bioenergy’, ‘biomass’,
‘biofuel’, ‘biodiesel’, ‘ethanol’, and ‘charcoal’. This yielded around
400–2700 papers per impact category (see Table A.1). Papers whose
title and abstract were unrelated to this research were discarded. The
selection of sources was then narrowed down by excluding studies that
did not focus on ex-ante assessment. From the remaining papers, the
assessed indicators, the method used, and the spatial scale of the study
were recorded, i.e. the level at which the analysis was done, and the
results presented (e.g. continental, local, or national level). From the
method and discussion sections of these selected papers and review
studies, the potential, limitations, strengths, and weaknesses of the
methods, i.e. their suitability to ex-ante quantify the socio-economic
impacts of bioenergy, were then discussed. This discussion also in-
cluded opportunities to improve the ex-ante quantification methods.

3. Results

3.1. Relevant indicators

13 socio-economic impacts categories for bioenergy were identified:
employment and income, food security, macroeconomic development,
rural economic development, energy access, energy independence,
economic feasibility, health and safety, land rights, working conditions,
social acceptability, equal opportunities, and community impacts. For
these impacts 236 indicators were mentioned in reviews, certification
schemes, and guides of good practice. Table A.2 in the appendix gives
an overview of all indicators. Of these 236 indicators, 46 are considered
relevant, which means they reflect the effects of bioenergy, are included
in certification schemes or agreed upon in stakeholder consultation
processes, and a numerical value can be assigned to them. This list was
obtained (see Table 1) by removing those indicators that: a) do not
reflect impacts (78), or b) are not quantifiable (32), or c) are not in-
cluded in certification schemes or mentioned by stakeholders (80), as
illustrated in Fig. 2. Table 1 gives an overview of the 46 indicators that
are considered relevant.

The highest number of relevant indicators was found for employ-
ment and income, with nine relevant quantitative indicators that pro-
vide insight into the effects on this category. These relevant indicators
contain the whole spectrum of impacts: from the number of jobs created
and lost in other sectors to information on who benefits from these jobs
(e.g. locals or migrants) and the income generated for the employees.
The indicators for employment and income are also the indicators
mentioned the most in the literature, and are often mentioned as im-
portant by the stakeholders (e.g. for food security effects, the indicators
reflect the four pillars of food security —availability, access, utilisation

and stability—identified by the United Nations Food and Agriculture
Organisation (FAO) which means all aspects of the issue are included
[56]. For land rights, working conditions, economic feasibility, com-
munity impacts, energy access, and equal opportunities, only two to
four relevant indicators were identified, but there is a high consensus
on each of these indicators, illustrated by the large number of sources
that include them. For health and safety, four relevant indicators were
identified, but none of them had been named more than three times.
Although macroeconomic impacts, rural economic development, and
energy independence are often the rationale used for implementing
bioenergy, few relevant indicators are available, and they are seldom
mentioned.

Social acceptability is the only impact category for which no re-
levant indicator was found, since the indicators that have been found
(e.g. commitment to ethical conduct [30], effective stakeholder parti-
cipation [6,10], transparency [6,57]) are either qualitative or not in-
cluded in a certification scheme or mentioned in a stakeholder con-
sultation process.

3.2. Ability to quantify

In total, 218 studies that contained an ex-ante quantification of re-
levant socio-economic indicators were reviewed. As some studies have
quantified multiple indicators, a total of 474 ex-ante quantifications was
analysed. The indicator that is quantified the most is profitability,
which is included in over 50 of the selected studies.

From the actual quantification of the indicators in the various stu-
dies (see Table A.3 in the appendix and Fig. 3), it is shown that mac-
roeconomic impacts, employment and income, and rural development
are quantified the most often and at almost all spatial levels. For
macroeconomic impacts, there are many methods available to quantify
the four indicators (see Table 1 and Table A.3); although most studies
use input-output modelling in combination with other methods.

No study was found that ex-ante quantified the community impacts
of bioenergy. Although management has a strong influence on the
outcome of this indicator, it is difficult to quantify it, which increases
the uncertainty. This also renders the projections of this indicator less
valuable.

Other indicators that were not found to be quantified ex-ante are:

• ratio of local and migrant workers, and ratio between permanent
and temporary jobs (in employment & income);
• seasonality of hunger (in food security);
• capacity of infrastructure (in economic feasibility);
• crime, indoor wood cooking, risk of HIV and other diseases (in
health and safety);
• education provided to employees (in working conditions).

For rural development, equal opportunities, and health and safety
categories, this means only two indicators are quantified ex-ante, and
for working conditions, just one. For employment and income, the
absence of these two indicators means that two of the three indicators
for the social distribution of employment are not quantified, with only
the ratio of skilled/unskilled employees being quantified. This indicates
that ex-ante quantification of employment and income impacts of
bioenergy are not comprehensive.

Most indicators are quantified using a regional- or national-level
method. There are exceptions to this. For example, profitability and
total investment are almost always quantified at the project level, as
that is where these impacts occur and the methodology applied—cash
flow analysis can quantify the profitability at the project level. Food
prices and trade, however, are usually quantified at the national or
higher level, although the impacts could be from local to global level
[61]. This means lower aggregation level impacts are not included in
the current methods, and the geographic distribution of these effects
have not been quantified ex-ante in the reviewed studies.

Fig. 1. Selection process of relevant indicators of socio-economic impacts of
bioenergy.
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3.3. Suitability

This section focusses on the macroeconomic models [input-output
(IO), computable general equilibrium (CGE) models and partial equi-
librium (PE) models], because studies employing a macroeconomic
model either alone or in combination with other methods, cover almost
the entire spectrum of socio-economic impacts (see Fig. 3 and Table A.3
in the appendix). The suitability of the methods are evaluated based on
its operation and limitations, the indicators it addresses, the spatial
levels it can be applied at, and how the suitability of the method for ex-
ante quantification of socio-economic impacts of bioenergy can be
further extended and improved by combining with other methods.

3.3.1. Input output models
An IO model consists of a static overview of all deliveries to and

from each economic sector in a single geographic area; it links the
additional demand proportionally to extra production in all supplying
sectors [72,73]. IO models are used to calculate the socio-economic
impacts of bioenergy because they can differentiate between direct,
indirect, and induced effects2 and, are relatively easier to use than CGE
and PE models and can include multiple impacts [47,73,74].

On a national level, an IO model is generally used to determine the
effect on GDP [47,73–83] or regional value added [47,77,79,83–87].
The IO approach can be extended to other socio-economic impacts by
relating the economic activity in a sector to the socio-economic impact
(e.g. employment per million dollar) [73]. For example, job creation
(e.g. Refs. [47,79,83,86,87]), job loss in other sectors [88], educational
level [89], occupational accidents [90], and traffic safety [91]. To apply
this method, sectoral data on these impacts are required. Such data can
be provided by the social hotspots database [69], which contains sec-
toral data on socio-economic impacts that can be coupled to the out-
comes of an IO model [28,69,89].

An IO model is based on the economic interactions between speci-
fied sectors in the social accounting matrix (SAM) for a specific area,
meaning socio-economic impacts can be calculated only for that area
and spatial level without interaction with the rest of the world. Multi-
region IO models broaden the IO approach by including the interaction
between the sectors in various countries (e.g. Ref. [74]) or regions
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Fig. 2. Process to cull the long-list of 236 total indicators to the list of 46 re-
levant indicators.

2 Direct effects are from the expansion of the bioenergy sector, indirect effects
are those that occur as a result of additional economic activities in the sup-
plying sectors, including the suppliers of the suppliers, and induced effects are
from spending the additional income that households earned from the direct
and indirect activities [47,73].

M.L.J. Brinkman, et al. Renewable and Sustainable Energy Reviews 115 (2019) 109352

5



within a country (e.g. Refs. [47,77]). This helps identify areas where
the effects of bioenergy materialise (e.g. where employment will in-
crease) and activities that generate economic activity elsewhere (i.e.
cause the largest spill-over effect) [47,74,77,80,83,92]. The downside
of the additional information on the distribution of the socio-economic
effects over different regions or countries, is the reliance on generally
poor-quality trade data and exchange rate effects [93].

One limitation of IO models is the time lag in the availability of
data. Owing to the data intensity for producing SAMs and the in-
frequent updates the data are not current. This means new develop-
ments, such as new or rapidly-expanding sectors (e.g. bioenergy) and
their interactions with other sectors, are not covered well. Furthermore,
due to their static nature, IO models cannot endogenously incorporate
technical progress (e.g. more efficient production methods) or struc-
tural changes to the economy [87,94]. Changing the technical coeffi-
cients of the model can help include technical change and thereby make
the IO model more accurate and suitable for projecting socio-economic
impacts [95]. Updating the technological coefficients can show the ef-
fects of mechanisation in feedstock production on employment [47].

Although in practice, the additional demand for bioenergy leads to
effects in other sectors through price dynamics, competition, and sub-
stitution, this effect is not included in IO models [96,97]. This can result
in overstating the size of the socio-economic impacts of bioenergy [97].
By linking the IO model to other models (e.g. CGE or land use) or using
the outcomes of these models, the IO model can take price dynamics,
competition, and substitution effects into account. The other models
can help determine the size [98,99] or regional distribution [47,84] of
future bioenergy demand as input to the IO model [100]. This improves
the quality and the spatial detail of the calculated socio-economic im-
pacts, when combined with a multi-regional IO model.

3.3.2. Computable general equilibrium models
CGE models are a type of macroeconomic models that include a

global coverage3 of all sectors of the economy and the economic

interactions of supply, demand, and competition between the sectors
that lead to a state of equilibrium [101]. CGE models are used for
studying the socio-economic impacts of bioenergy because of their
ability to include indirect effects, and the global scope matches the
chain of effect of bioenergy [102–107]. CGE models are most suitable
for mid-term analysis, typically 10–20 years in the future.

For socio-economic impacts of bioenergy, CGE models are usually
used to calculate change in GDP [105–116], price and supply of food
[101,105–107,109,114,115,117,118], trade volume [101,106,107,112],
and wages [105,107,109,112,114] because of bioenergy expansion (see
Fig. 3 and Table A.3). The effects that are calculated directly by the
model are changes in price and production volume of economic sectors
and the interactions between the sectors. CGE models are limited to
monetary interactions that do not correspond well with physical volumes
[104]. This means, for example, food is only included based on its
monetary value, although the nutritional intensity (nutrients per $) can
vary significantly. This leads to uncertain results as it is difficult to assess
indicators based solely on the monetary value of a sector, especially in
aggregated sectors. One key example is land use, for which the compe-
tition between bioenergy and other sectors is very important. To include
other effects (such as job creation) it is possible to use the same method
as in an IO model—relating the impact to the economic intensity of a
sector [109,119,120].

Most CGE models use national-or-higher-level aggregate data for the
interaction between the various sectors. Hence, the effects do not ac-
count for variations at lower spatial levels. The same holds true the
sectoral aggregation; variation within sectors cannot be detected with a
CGE model, even though there will be winners and losers within a
sector. It becomes necessary to modify the CGE model to provide more
detailed results, including the social or geographical distribution of
effects. While most CGE models contain only one household per region,
it is possible to derive household-level results by splitting that single
household into multiple households in a specific area [107,121]. By
differentiating the households according to region, income [122,123],
or location (urban/rural [122]), additional information on the social
and geographical distribution of the effects of bioenergy can be derived.
Another option is to extend the analysis with microsimulations, which

Fig. 3. Relative frequency of use of a spatial aggregation level (left) or quantification method (right). The size of a bubble reflects the number of studies with a
specific combination of impacts, methods, and spatial scale.

3 Disaggregated in multiple countries or continents.
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does not rely on the disaggregation of top-down SAM to various
households, but uses bottom-up data from a household survey to si-
mulate the effects of price and income changes on thousands of dif-
ferent households [107,108,111,124]. This approach can show the
distribution of the socio-economic effects for multiple households
[125]. Using microsimulations, impacts can be determined at house-
hold or local level and can include, for example, household income and
poverty rate [105,107,108,111].

CGE models are dynamic, meaning the relations between the sectors
can change over time in response to changes in the economy, based on
the models' elasticities [113]. Therefore, projections can include the
effects of developing technology. However, as these effects are based on
historical data, the modifications to the model's elasticities are also
confined to those based on historical data. The time lag between the
base year and publication year for SAMs is even longer in CGE mod-
elling than in IO, as its production is a more data-intensive process.
Bottom-up technology assessment [126] or adaptations from the
structure of the sector in other areas [123] can be used to include
bioenergy expansion to new areas in a CGE model. Nevertheless, this
does not account for all structural changes to the economy in general
and agriculture in particular. More sustainable production methods and
potential for faster progress in the agricultural sector are not included
in the CGE models, although these are important for sustainable bioe-
nergy production, for example, by limiting competition for land (e.g.
Refs. [127,128]). Incorporating the potential to reduce negative im-
pacts, either via technology or policy interventions, in the CGE models
would enable higher quality assessment of the sustainability impacts.
For example, for the effects on food security, competition for land plays
a major role.

One basic assumption of CGE models is that an economy tends to-
wards equilibrium. However, this does not exist in practice [119].
Further, disregarding the adjustment path towards equilibrium might
mean overlooking periods of extreme food price volatility, food
shortages or other potential negative effects of bioenergy in the short
run [129]. The equilibrium assumption has implications specifically for
the projections on employment because labour is not a normal com-
modity [116,119] as employees cannot be as easily transferred from
one sector or region to another as capital can. Thus, additional em-
ployment in a specific sector does not necessarily compensate for job
losses in another sector or region [119]. This means unemployment
from displacement of production (e.g. in the fossil fuel sector) is likely
to be underestimated in a CGE model, especially in the short term,
because labour markets require time to adjust. These limitations have a
smaller impact, -the longer time-frame used in the CGE model
[104].One option to address this issue is to distinguish different skill
levels in employment and thereby, make labour a less homogeneous
good in the model [108].

Linking a CGE model to other models can help overcome the lack of
detail in the relations between the sectors in the global model. For
example, by linking a CGE to an energy sector model, such as MARKAL
[116], a biophysical model [105,130], a land use model [47,131] or
detailed technical modelling of biofuel production chains [130], the
modelling outcomes of the CGE can be more spatially explicit or better
account for variation within economic sectors, which is not included in
the economic model itself.

3.3.3. Partial equilibrium
PE models are similar to CGE models -they also use the laws of

supply and demand to establish a new equilibrium after an economic
shock has been introduced. Regardless, instead of the highly aggregated
sectoral that is used in a CGE model, only a limited number of sectors is
included in a PE model, and these are represented in greater detail.
Modelling of the sector(s) included in the PE model is more extensive,
and includes many products and interrelations between sectors; hence,
PE models are typically used for longer-term analyses (up to 40 years).

PE models are most commonly used to calculate the impacts on

trade [132–140], food prices, and food supply [98,134,135,140–146].
Most studies present the results on national [98,116,
132–139,144,145,147–150] or higher [99,140–143,146] spatial ag-
gregation levels. The increased detail in the energy sector, compared
with CGE or IO models, helps provide projections on, for example, the
role of bioenergy in the energy mix [137,151,152], change in fossil fuel
imports [99,135,149,151] and changes in the use of traditional bioe-
nergy [145,152]. Further, a PE model can be adapted to include spa-
tially explicit land-use modelling, to reflect the competition between
various land uses (e.g. Ref. [153]). As competition takes into account
local suitability, the projections of land use are more detailed than in a
CGE model. PE models are, for example, used to project reduction in
land for food production [143,150], or to determine where current
agricultural land is replaced by bioenergy feedstock [148,149,154].

PE models include only a partial representation of the economy and
assume fixed prices and income in other sectors (i.e. ceteris paribus).
This means socio-economic effects for the other sectors are not in-
cluded. However, in reality, the effects of bioenergy are not limited to
the few sectors that are included in the PE model. This problem can be
partly mitigated by combining the global modelling of a CGE model
with the detailed analysis of a PE model [116], or combining several PE
models [140].

3.3.4. Bottom-up and process modelling
Bottom-up models are a heterogeneous group of various analytical

and process models. One commonality of the methods is that they start
with a detailed representation of the interactions between inputs and
outputs and do not contain explicit modelling of interactions outside
the production chain, such as market-based effects [104,155,156].

The social-economic impacts are analysed starting from the tech-
nical performance of the bioenergy supply chain and its energy and
mass balance. The technical model can then be used to project the total
investment (e.g. Refs. [157–160]) and profitability (e.g. Refs.
[161–163]) of a project. Some studies use special process modelling
software, such as ASPEN (e.g. Refs. [161,164]), or a spreadsheet model
[161,165,166] for modelling and cost estimation using the share of
labour in the total cost, or extrapolating the labour requirement to es-
timate job creation at the project level (e.g. Refs. [167–169]), the ratio
between skilled and unskilled employees [168], or wages [170,171].

These bottom-up models are almost exclusively used for project-
level estimations for the near future. Although the methods are rigorous
and includes all aspects of the production process, they cannot account
for indirect effects of investment on the rest of a region or country,
neglecting the effects of competition and additional production in the
rest of the economy [50,172].

Bottom-up modelling can be combined with macroeconomic mod-
elling, such as IO or CGE analysis to account for indirect effects
[172,173]. In the latter case, the dynamic changes to the economy can
also be included. In such combined approaches, the detail of the process
modelling can be integrated with the potential of the macroeconomic
models to calculate indirect effects.

3.3.5. Cash flow analysis
Cash flow analysis makes an overview of all expected monetary

incomes and expenditures and calculates profitability, taking opportu-
nity costs and interest rates of capital into account. It is typically
combined with bottom-up and process modelling (e.g. Refs.
[174–178]), it is relatively easy, and transparent. The data requirement
can be low, depending on the depth of the process modelling, although
for new processes, the availability can be low and the data uncertain.
Cash-flow analysis is usually done at the project level. Combining cash
flow analysis with Monte Carlo simulation can provide information on
the uncertainties of outcomes [179].

3.3.6. Social life cycle assessment
Another distinctive set of methods are life cycle assessment (LCA)
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and social LCA (sLCA) [180,181]. LCA is a standardised method that
inventories all physical and energy input and output flows of specific
production process and calculates their environmental impacts. In the
context of socio-economic impacts of bioenergy, only the impacts of
fossil fuel use and its reduction [182–184] and human health effects for
employees [65] or the general public are relevant. For example, re-
spiratory diseases caused by sulphur dioxide and NOx emissions from
using biofuels in the transport sector [80,183,185,186]. These health
effects (expressed as disability-adjusted life years) could be converted
to economic damages (in monetary terms), and included in economic
modelling (e.g. Ref. [187]).

sLCA is an extension of the LCA framework that relates the input
and output of a production process to social impacts instead of en-
vironmental impacts [180,188]. Not all studies quantify the impacts,
but rather use a narrative to indicate the risk of negative impacts
[69,180,188,189]. In bioenergy, job creation [89,90,190], wages
[89,90,190], and occupational accidents [89,90,190] have been ex-ante
quantified using sLCA. These impacts are connected to the production
chain, but since no region-specific data are available, the results are
presented without specifying the location [51]. (s)LCA focuses on a
specific production system, with clearly defined boundaries. This means
the cumulative effects or indirect effects on other systems, for example,
arising from competition for land, are not included.

Some studies use a hybrid input-output-(s)LCA approach
[73,77,89–91,191,192], where the detailed modelling of the produc-
tion system is replaced with the more general approach of IO modelling
[181,193]. This sacrifices detail in the exact inputs and location of
production and spatial detail. However, it makes it possible to include
indirect effects in a (s)LCA [193]. Further, the process information
gathered for the LCA can also be used as an input for the technical
coefficients in the IO model.

3.3.7. Other methods
A few additional methods have been used to ex-ante quantify socio-

economic impacts of bioenergy. For impacts at a low spatial level,
system dynamics models [75,194–196] and agent based modelling
[197,198] have been used. These models represent a bioenergy systems
based on the actors and their interactions [199]. Despite that, these are
typically applied to explain the present state of a system, ex-post, rather
than project future responses. Spatially-explicit methods (e.g. Refs.
[47,200–202]) have typically been used in combination with macro-
economic models. The macroeconomic effects calculated using CGE or
IO were converted to spatial effects using land-use allocation methods
(e.g. Ref. [47]). Integrated assessment models [203–206] and biophy-
sical [207] models have been used to determine impacts ar a global
level, to calculate mostly land-use change effects especially relevant for
food security. Game theory is relatively new and only one study was
found that used this approach in the context of socio-economic impacts
of bioenergy - to determine trade impacts [208]. Game theory is gen-
erally used to analyse competition and cooperation and, in this sense,
could be relevant to analyse the interactions between bioenergy and
other agricultural sectors [209,210]. Many studies have used different
types of optimisation models [206,211–223], mostly as an extension to
bottom-up/process modelling to determine the best achievable out-
come. These models can be used to explore the socio-economic effects
in an optimal situation [221].

4. Discussion

Socio-economic impacts are an integral aspect of sustainability of
bioenergy and should preferably be quantified ex-ante to enable in-
formed decision making and to stimulate the development of sustain-
able bioenergy. This study reviewed the state-of-the-art ex-ante assess-
ments of socio-economic impacts of bioenergy. Using previous studies,
guidelines of good practice, and certification schemes, the relevant in-
dicators and the ability and suitability of methods to quantify these

indicators at various spatial levels, were identified and analysed. The
review shows the multiple methods (see Fig. 3) available for ex-ante
quantification of the impacts of bioenergy (see Table 1). These methods
can be applied at different aggregation levels (see Fig. 3), which makes
it possible to analyse the geographic distribution of the impacts. The
review also identifies the gaps and limitations at specific spatial levels
in their ability to quantify ex-ante the relevant indicators of socio-eco-
nomic impacts of bioenergy.

There are some limitations to these findings. When making the
overview the applied indicators of socio-economic impacts, not all ex-
isting certification schemes and guides for good practice were analysed
on the presence of socio-economic indicators. For example the
European Commission has already recognised 15 certification schemes
to be used for biofuels under the Renewable Energy Directive [224].
Some of these are for specific production chains (e.g. U.S. Soybean
Sustainability Assurance Protocol or Roundtable on Sustainable Palm
Oil), and can therefore be tailored to these production chains and
contain socio-economic impacts that are not relevant in other produc-
tion chains. However, as some of the most relevant certification
schemes are analysed in this study it is unlikely major impact categories
were overlooked. In addition, some of these certification schemes re-
cognise biomass that is certified using other schemes as compliant in
their scheme (e.g. Ref. [225]). This means there cannot be a large
discrepancy between them. Another potential limitation to this study's
findings, is that potentially useful methods for projecting socio-eco-
nomic impacts of bioenergy can have been overlooked. The study fo-
cussed on the methods that have been applied in the context of bioe-
nergy. This means, that methods from other fields of research may have
been ignored.

The gaps in literature identified in this study are discussed in greater
detail in section 4.1. These gaps should be the focus of future studies
that aim to quantify the socio-economic impacts of bio-energy. Section
4.2 gives final remarks on ex-ante quantification of socio-economic
impacts of bioenergy.

4.1. Gaps and limitations

Ex-ante quantification of social acceptability and community
impacts has not been found, but other socio-economic impacts of
bioenergy are quantified ex-ante. The absence of quantitative pro-
jections is likely a result of the importance of the local context and the
specific management choices for the actual performance of (local)
projects [3,11]. As these factors may play a large role, the uncertainty
of a projection would be greater. Although social acceptability and
community impacts are not ex-ante quantifiable, it does not mean these
should not play a role in decision making. However, neither of these
impacts has attracted much support during stakeholder consultations,
even when the subject has been explicitly addressed [65,66,226]. Only
in the case described by Dale et al. [227], there is some support
amongst stakeholders to include public opinion in the sustainability
criteria of bioenergy.

One important aspect in the quantification of socio-economic
impacts is the inability to include the social context in ex-ante
quantitative models. The social context contains aspects, such as
cultural norms, strength of government, and local institutions
[27,228–231]. Together with other aspects that can be included in the
models, such as the biophysical, economic situation, technological and
feedstock choice, the social context also influences the magnitude and
importance of the socio-economic impacts of bioenergy [11,232,233].
The social context influences the sustainability criteria used for bioe-
nergy production and their enforcement [27,232]. Many certification
schemes demand compliance with local laws, for example, for land
acquisition or labour rights. However, for countries with weak legal
frameworks or that set a low bar for the sustainability of bioenergy, this
demand for compliance with local laws may not guarantee positive
effects for the population [27,230,234]. Integrating this social context
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in ex-ante modelling is a challenge. For models that are calibrated to
historical data, such as CGE, PE, and land-use models, the effects of the
social context are implicitly included. During the model calibration
phase, the model is benchmarked and adapted to reflect past outcomes
[153,235]. The real-life data (as opposed to model outcomes), which
are used to calibrate the models, indirectly reflect the choices that
people made within their respective social context. As a consequence of
adapting the models to fit these actual outcomes, the elasticities, which
represent the market responses to changes, reflect these choices.
Nevertheless, the effectiveness of a calibration procedure depends on
the availability of high quality datasets for the model calibration
[97,236]. Therefore, future work in the form of monitoring of, say,
agricultural, performance is needed to improve data availability and
model outcomes. These data can also help better include technological
progress in the models.

In the context of the environmental performance of bioenergy,
Davis et al. [237] used the term ‘management swing potential’ to in-
dicate how much impact management can have on the environmental
effects of bioenergy. It can be hypothesised that the management swing
potential for socio-economic impacts differs among various impacts,
depending on the importance of the management compared to bio-
physical and social context factors for the specific socio-economic im-
pacts [11,59]. For the socio-economic impacts where the management

swing potential is relatively large (e.g. labour rights or freedom from
discrimination), making projections becomes more difficult. This can be
partly overcome by varying potential management strategies using
scenario analysis to reflect the range in outcomes. This could also be
applied to make projections on community impacts, for which no other
quantification methods were found.

Indirect effects are often not properly captured by the models.
It is important to determine indirect effects of bioenergy deployment,
such as on food security, because these are an important part of the
total effects. However, only a few methods are able to include these
indirect effects. As these effects are often the result of competition or
substitution between the economic sectors in the model, macro-
economic models can include effects outside the bioenergy sector.
Nevertheless, as the spatial detail of these macroeconomic models is
relatively low, the indirect impacts are determined at a higher ag-
gregation level. This means that the impacts are not specifically cal-
culated at the lower spatial level where these impacts occur. Inclusion
of multiple households in these models or lower-aggregation-level
analysis is be required to increase the level of detail (see also Fig. 4 or
e.g. Ref. [238]).

Additionally, not all socio-economic impacts that can be quantified
by the methods are actually presented as results in the studies. For
example, IO studies that present the net employment effects of

Fig. 4. Model collaboration to overcome the identified blind spots of food security impacts at low aggregation level. A macroeconomic model (e.g. CGE) gives the
global context, dynamics, and (indirect) interactions (1). This information can be disaggregated to a lower level (2) for example by distinguishing multiple
households within the country, and used to determine the effects on food consumption and nutrition (3), based on the changes in income, prices, and production. The
local context is included through a link with a land use model (4) that provides spatial explicit allocation of the land use. A bottom-up model can be used to determine
local agricultural and bioenergy processing costs, which can be converted to cost structures to be used in the macroeconomic model, for example, by including local
input prices and management practices. Land use allocation is dependent on the local conditions such as the current biophysical conditions (4). To account for the
seasonal variation, uncertainty analysis (7) can be applied to provide information on the variations in food supply throughout the year. The colour of the indicators
on the right hand-side of the figure relate to the pillars of food security: availability (orange), access (purple), utilisation (green), and stability (black). (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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bioenergy can also calculate the job loss in other sectors [47,88].
However, this is often not included, omitting an important indirect
effect. Another example of indirect effects that are not presented by the
studies are the health and safety aspects of indoor smoke resulting from
use of traditional bioenergy. Increasing household income leads to a
switch to other fuel sources [239,240] and, thereby, to better indoor air
quality and lower health impacts [241,242]. Other aspects that are
linked to income are the time spent by women gathering fuelwood
[243,244]. These aspects are not directly included in studies on bioe-
nergy use. Despite that, this would become possible by explicitly linking
these impacts to the income effects of bioenergy.

One key blind spot is the lack of methods to assess the local
effects of bioenergy on food supply and price. Smith and
Bustamante [61] have shown that the food security impacts of bioe-
nergy range from local to global. However, to our knowledge, no local-
or household-level assessment of the effect of bioenergy on the avail-
ability or price of food has been published so far. The only sub-national
food security impacts that were found to be structurally quantified ex-
ante are the effects on agricultural land use [194,201,245,246]. Al-
though this is a useful proxy to show the impact of bioenergy on food
availability, it does not include the effects of additional income or a
potential switch to a higher yielding crop. As no low-aggregation-level
ex-ante quantification has been found, it is hard to assess the distribu-
tion of food security effects of bioenergy at the aggregation level at
which it is most relevant (i.e. households).

Current methods for ex-ante assessment of socio-economic im-
pacts of bioenergy can provide more information than what is
obtained, but more work is needed to include the effects on all
relevant spatial levels. It appears that not all socio-economic effects of
bioenergy are so far quantified ex-ante at the spatial levels where those
impacts occur. Regardless, the analysis can be extended beyond what
has already been done. Here, it is demonstrated how a combination of
different methods can be used to extend the analysis of the socio-eco-
nomic impacts of bioenergy beyond the current state-of-the-art. This
also addresses the blind spots in the assessment of the geographic dis-
tribution and illustrates how the distribution of food security impacts of
bioenergy can be determined for a specific case.

Six relevant indicators of food security were identified in section
3.1: i) area of food crops, ii) food prices, iii) food supply, iv) calorie/
nutrient deficit score, v) yields of main staple crops, and vi) lowest
monthly calorie deficit/seasonality of hunger (see Table 1). To quantify
these impacts ex-ante on a low spatial-aggregation level, potential
connections between existing models and are discussed and illustrated
in Fig. 4. Fig. 5 shows the spatial level at which each pillar of food
security can be quantified.

The scenarios for socio-economic development at the macro level

(population, global economic growth, etc. [203]) and the bioenergy
demand for which the food security effects are to be assessed are the
starting point for the analysis of food security impacts of bioenergy at
the household-level. A macroeconomic model (1, in Fig. 4), such as a
CGE or PE model (e.g. Ref. [247]) can account for the dynamics in
demand and supply of all sectors in response to the bioenergy demand
in such scenarios. This includes the indirect effects in the rest of the
economy as a result of this increased bioenergy demand. The economic
dynamics of the macroeconomic model lead to national-or-higher-level
projections on developments in food demand, supply, and prices as well
as the aggregate information on average household income. A dis-
aggregated macroeconomic model (2, in Fig. 4) that spatially dis-
aggregates -regions or income groups (e.g. Ref. [121]) to gain insight in
the geographical or social distribution of these effects. The use of a
macroeconomic model with sub-national sectors enables the inclusion
of selected household types in the economic dynamics of the model (see
e.g. Ref. [248]). Disaggregation to household types for specific regions
or income groups can provide information on the distribution of the
food security effects within a country.

The land use of each crop determined in the macroeconomic model
can be spatially disaggregated using a land-use allocation model (5, in
Fig. 4) that can operate at the desired spatial level (e.g. Refs.
[249,250]). The inputs for the land allocation model are maps of cur-
rent land use and infrastructure, information on local suitability and
yields, for example, from the biophysical model (4, in Fig. 4), and the
total land demand in future scenarios. The biophysical models use in-
formation on climate, local soil conditions, technological development,
and intensification to determine the suitability and potential yields in
each location (see e.g. Ref. [251]). The outcomes of the land allocation
model can be used to determine land use in the regions of the dis-
aggregated macroeconomic model. Integrating the macroeconomic and
land allocation models enable the inclusion of feedback mechanisms
between the demand and supply of land. Further, this can help better
project yield development and competition for land between among
agricultural demands by including both biophysical and economic dy-
namics that determine yield development. Specific local conditions can
be factored into the cost structures for agriculture or bioenergy con-
version in the macroeconomic model using bottom-up technology
projections (6, fin Fig. 4) that are dependent on local prices, manage-
ment practices and yields (e.g. Ref. [126]).

A nutrition module (3, in Fig. 4) added to a CGE model, for example,
through post analysis [120] or microsimulations [252], can project the
consumption changes resulting from changes in income, prices, and
production. Combining these model outputs with information on the
energy and nutrient content of food products can then give the
household calorie and nutrient consumption. Comparing this to the

Fig. 5. Aggregation level for ex-ante quantification of food security indicators. The indicators are classified based on the four pillars of food security (availability, access,
utilisation and stability) as defined by the FAO [56].
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recommended nutrient and energy intake then indicates whether there
is a surplus or deficit in food consumption. The seasonal variation in
calorie intake can be determined in an uncertainty analysis (7, in
Fig. 4), where the information on total food supply, with household
survey data and for example Monte Carlo simulations are used to de-
termine the likelihood of the food supply dropping below the required
level. Fig. 5 presents the levels at which the pillars of food security can
be quantified ex-ante.

4.2. Conclusions

Ex-ante quantification of the socio-economic impacts of bioenergy is
an important aspect in the assessment of its sustainability because
quantitative information can help present the effects in a transparent
and objective manner, providing insight into the trade-offs between the
positive and negative impacts. Based on the lessons learnt from this
review three recommendations for improved assessment of socio-eco-
nomic impacts are made: i) extending the analysis to more indicators
and aggregation levels; ii) improving the macroeconomic models and
their data requirements; and iii) reassessing the role of socio-economic
impacts in certification schemes.

To enable a comprehensive ex-ante assessment of the socio-eco-
nomic impacts of bioenergy, more efforts need to be made to improve
the quantification of those indicators for which no quantification
methods have been found. This could require developing new methods,
or as illustrated for food security in Fig. 4, collaboration of existing
methods to provide more insights into the distribution on lower ag-
gregation levels. Another option is to explore new indicators that can be
quantified ex-ante and can be used as a proxy for the missing indicator
[253]. For example, use the change in the share of households above a
certain income threshold as a proxy for the reduction in health effects of
indoor smoke (e.g. Refs. [239–242]).

Extending the analysis to a lower spatial aggregation level and/or
other sectors helps show the distribution of the socio-economic impacts,
but it is not yet feasible for most cases because data unavailability.
Since a CGE, PE or IO model, or a combination of these is the most
likely option to ex-ante assess the socio-economic impacts of bioenergy
at a lower spatial aggregation level, timely availability of social ac-
counting matrices is required. Disaggregated models are only available
for specific situations. The data intensity makes it unfeasible to dis-
aggregate a macroeconomic model for each specific study. For low
spatial aggregation levels, high-quality data are difficult to obtain and
depend on the quality of data collection. In countries with a large in-
formal economy and few resources for gathering data, data collection is
more difficult and data quality is often poor. At the same time, these
countries are also the most likely to experience negative impacts of
bioenergy, which is why it is even more important to have high-quality
data and ex-ante assessment of socio-economic impacts. This need for
better-quality data also applies to technological development in agri-
culture and conversion processes. Although technological progress can
significantly influence the occurrence and level of socio-economic im-
pacts of bioenergy, it is only included with a delay. This makes it more
difficult to include the effects of more sustainable practices in ex-ante
analyses.

Further, the availability of spatial land use information is crucial.
Land use dynamics are important to determine the competition for land
and other resources. Land use allocation could increase the spatial de-
tail of the socio-economic impacts (e.g. Ref. [47]), but it depends on the
availability and the quality of spatial data for current land use and local
suitability to properly model the land-use dynamics [131]. This un-
derlines the importance of developing land use and land quality maps of
areas where bioenergy can have a direct or indirect impact.

The review of the socio-economic indicators in certification schemes
shows that these play a relatively minor role as compared to environ-
mental indicators. Moreover, the socio-economic criteria used are
mostly based on past performance, rather than ex-ante projections.

However, an ex-ante assessment of the socio-economic impacts of
bioenergy can help promote the positive impacts and avoid production
where negative impacts could occur. Such ex-ante assessments can go
together with certification as it is equally important to verify the actual
production practices. This can help stimulate sustainable production of
bioenergy.
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