22 research outputs found

    Neutrino Physics: an Update

    Get PDF
    We update our recent didactic survey of neutrino physics, including new results from the Sudbury Neutrino Observatory and KamLAND experiments, and recent constraints from WMAP and other cosmological probes.Comment: latex; 19 pages; five figure

    Neutrino Physics

    Get PDF
    The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics.Comment: Prepared for the American Journal of Physics; 50 pages; 11 figures (10 included); late

    Neutrino physics: An update

    Full text link

    Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces

    Get PDF
    For some years Lanczos moments methods have been combined with large-scale shell-model calculations in evaluations of the spectral distributions of certain operators. This technique is of great value because the alternative, a state-by-state summation over final states, is generally not feasible. The most celebrated application is to the Gamow-Teller operator, which governs β decay and neutrino reactions in the allowed limit. The Lanczos procedure determines the nuclear response along a line q = 0 in the (ω,q) plane, where ω and q are the energy and three-momentum transferred to the nucleus, respectively. However, generalizing such treatments from the allowed limit to general electroweak response functions at arbitrary momentum transfers seems considerably more difficult: The response function must be determined over the entire (ω,q) plane for an operator O(q) that is not fixed, but depends explicitly on q. Such operators arise in any semileptonic process in which the momentum transfer is comparable with (or larger than) the inverse nuclear size. Here we show, for Slater determinants built on harmonic-oscillator basis functions, that the nuclear response for any multipole operator O(q) can be determined efficiently over the full response plane by a generalization of the standard Lanczos moments method. We describe the piecewise moments method and thoroughly explore its convergence properties for the test case of electromagnetic responses in a full sd-shell calculation of ^(28)Si. We discuss possible extensions to a variety of electroweak processes, including charged- and neutral-current neutrino scattering

    From Hadrons to Nuclei: Crossing the Border

    Get PDF
    The study of nuclei predates by many years the theory of quantum chromodynamics. More recently, effective field theories have been used in nuclear physics to ``cross the border'' from QCD to a nuclear theory. We are now entering the second decade of efforts to develop a perturbative theory of nuclear interactions using effective field theory. This work describes the current status of these efforts.Comment: 141 pages, 58 figs, latex. To appear in the Boris Ioffe Festschrift, ed. by M. Shifman, World Scientifi

    Piecewise moments method: Generalized Lanczos technique for nuclear response surfaces

    Get PDF
    For some years Lanczos moments methods have been combined with large-scale shell-model calculations in evaluations of the spectral distributions of certain operators. This technique is of great value because the alternative, a state-by-state summation over final states, is generally not feasible. The most celebrated application is to the Gamow-Teller operator, which governs β decay and neutrino reactions in the allowed limit. The Lanczos procedure determines the nuclear response along a line q = 0 in the (ω,q) plane, where ω and q are the energy and three-momentum transferred to the nucleus, respectively. However, generalizing such treatments from the allowed limit to general electroweak response functions at arbitrary momentum transfers seems considerably more difficult: The response function must be determined over the entire (ω,q) plane for an operator O(q) that is not fixed, but depends explicitly on q. Such operators arise in any semileptonic process in which the momentum transfer is comparable with (or larger than) the inverse nuclear size. Here we show, for Slater determinants built on harmonic-oscillator basis functions, that the nuclear response for any multipole operator O(q) can be determined efficiently over the full response plane by a generalization of the standard Lanczos moments method. We describe the piecewise moments method and thoroughly explore its convergence properties for the test case of electromagnetic responses in a full sd-shell calculation of ^(28)Si. We discuss possible extensions to a variety of electroweak processes, including charged- and neutral-current neutrino scattering

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Symmetries and fundamental interactions in nuclei

    No full text
    ix, 435 p. : ill. ; 22 cm
    corecore