10 research outputs found

    MicroRNA as Potential Biomarkers of Platelet Function on Antiplatelet Therapy: A Review

    No full text
    MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by specific gene modifications. Platelets are the major source for circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology. MiRNAs have been shown to modify the expression of platelet proteins influencing platelet reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers of platelet reactivity during antiplatelet therapy as well as novel therapeutic targets in cardiovascular diseases (CVDs). Herein, we review diagnostic and prognostic value of miRNAs levels related to platelet reactivity based on human studies, presenting its interindividual variability as well as the substantial role of genetics. Furthermore, we discuss antiplatelet treatment in the context of miRNAs alterations related to pathways associated with drug response

    Alterations in the Genomic Distribution of 5hmC in In Vivo Aged Human Skin Fibroblasts

    No full text
    5-Hydroxymethylcytosine (5hmC) is a functionally active epigenetic modification. We analyzed whether changes in DNA 5-hydroxymethylation are an element of age-related epigenetic drift. We tested primary fibroblast cultures originating from individuals aged 22–35 years and 74–94 years. Global quantities of methylation-related DNA modifications were estimated by the dot blot and colorimetric methods. Regions of the genome differentially hydroxymethylated with age (DHMRs) were identified by hMeDIP-seq and the MEDIPS and DiffBind algorithms. Global levels of DNA modifications were not associated with age. We identified numerous DHMRs that were enriched within introns and intergenic regions and most commonly associated with the H3K4me1 histone mark, promoter-flanking regions, and CCCTC-binding factor (CTCF) binding sites. However, only seven DHMRs were identified by both algorithms and all of their settings. Among them, hypo-hydroxymethylated DHMR in the intron of Rab Escort Protein 1 (CHM) coexisted with increased expression in old cells, while increased 5-hydroxymethylation in the bodies of Arginine and Serine Rich Protein 1 (RSRP1) and Mitochondrial Poly(A) Polymerase (MTPAP) did not change their expression. These age-related differences were not associated with changes in the expression of any of the ten-eleven translocation (TET) enzymes or their activity. In conclusion, the distribution of 5hmC in DNA of in vivo aged human fibroblasts underwent age-associated modifications. The identified DHMRs are, likely, marker changes

    MicroRNAs as Biomarkers of Systemic Changes in Response to Endurance Exercise—A Comprehensive Review

    No full text
    Endurance sports have an unarguably beneficial influence on cardiovascular health and general fitness. Regular physical activity is considered one of the most powerful tools in the prevention of cardiovascular disease. MicroRNAs are small particles that regulate the post-transcription gene expression. Previous studies have shown that miRNAs might be promising biomarkers of the systemic changes in response to exercise, before they can be detected by standard imaging or laboratory methods. In this review, we focused on four important physiological processes involved in adaptive changes to various endurance exercises (namely, cardiac hypertrophy, cardiac myocyte damage, fibrosis, and inflammation). Moreover, we discussed miRNAs’ correlation with cardiopulmonary fitness parameter (VO2max). After a detailed literature search, we found that miR-1, miR-133, miR-21, and miR-155 are crucial in adaptive response to exercise

    The role of miRNAs in regulation of platelet activity and related diseases - a bioinformatic analysis

    No full text
    MicroRNAs (miRNAs) are small, non-coding RNAs, able to regulate cellular functions by induction of mRNA degradation and post-transcriptional repression of gene expression. Platelets are the major source of circulating miRNAs, with significant regulatory potential on cardiovascular pathophysiology and other diseases. MiRNAs have been shown to modify the expression of platelet proteins, which influence the platelets reactivity. Circulating miRNAs can be determined from plasma, serum, or whole blood, and they can be used as diagnostic and prognostic biomarkers as well as therapeutic targets including cardiovascular diseases (CVDs). Herein, we present original results from bioinformatic analyses, which identified top 22 platelet-related miRNAs including hsa-miR-320a, hsa-miR-16-5p, hsa-miR-106a-5p, hsa-miR-320b, hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-92a-3p as widely involved in platelet reactivity and associated diseases, including CVDs, Alzheimer’s and cerebrovascular diseases, cancer and hypertension. Analysis focused on the identification of the highly regulatory targets shared between those miRNAs identified 43 of them. Best ranked genes associated with overall platelet activity and most susceptible for noncoding regulation were PTEN, PIK3R1, CREB1, APP, and MAPK1. Top targets also strongly associated with CVDs were VEGFA, IGF1, ESR1, BDNF, and PPARG. Top targets associated with other platelet-related diseases including cancer identified in our study were TP53, KRAS, and CCND1. The most affected pathways by top miRNAs and top targets included diseases of signal transduction by Growth Factor Receptors (GDFRs) and second messengers, platelet activation, signaling, and aggregation, signaling by VEGF, MAPK family signaling cascades, and signaling by Interleukins. Terms specific only for platelet-related miRNAs included coronary artery disease, platelet degranulation, and neutrophil degranulation, while for the top platelet-related genes it was Estrogen Signaling Receptor (ESR) mediated signaling, extra-nuclear estrogen signaling, and endometriosis. Our results show the novel features of platelet physiology and may provide a basis for further clinical studies focused on platelet reactivity. They also show in which aspects miRNAs can be promising biomarkers of platelet-related pathological processes

    NGS Reveals Molecular Pathways Affected by Obesity and Weight Loss-Related Changes in miRNA Levels in Adipose Tissue

    No full text
    Both obesity and weight loss may cause molecular changes in adipose tissue. This study aimed to characterize changes in adipose tissue miRNome in order to identify molecular pathways affected by obesity and weight changes. Next generation sequencing (NGS) was applied to identify microRNAs (miRNAs) differentially expressed in 47 samples of visceral (VAT) and subcutaneous (SAT) adipose tissues from normal-weight (N), obese (O) and obese after surgery-induced weight loss (PO) individuals. Subsequently miRNA expression was validated by real-time PCR in 197 adipose tissues and bioinformatics analysis performed to identify molecular pathways affected by obesity-related changes in miRNA expression. NGS identified 344 miRNAs expressed in adipose tissues with ≥5 reads per million. Using >2 and <−2 fold change as cut-offs we showed that the expression of 54 miRNAs differed significantly between VAT-O and SAT-O. Equally, between SAT-O and SAT-N, the expression of 20 miRNAs differed significantly, between SAT-PO and SAT-N the expression of 79 miRNAs differed significantly, and between SAT-PO and SAT-O, the expression of 61 miRNAs differed significantly. Ontological analyses disclosed several molecular pathways regulated by these miRNAs in adipose tissue. NGS-based miRNome analysis characterized changes of the miRNA profile of adipose tissue, which are associated with changes of weight possibly responsible for a differential regulation of molecular pathways in adipose tissue when the individual is obese and after the individual has lost weight

    The role of non-coding RNAs in neuroinflammatory process in multiple sclerosis

    No full text
    Multiple sclerosis (MS) is a central nervous system chronic neuroinflammatory disease followed by neurodegeneration. The diagnosis is based on clinical presentation, cerebrospinal fluid testing and magnetic resonance imagining. There is still a lack of a diagnostic blood-based biomarker for MS. Due to the cost and difficulty of diagnosis, new and more easily accessible methods are being sought. New biomarkers should also allow for early diagnosis. Additionally, the treatment of MS should lead to the personalization of the therapy. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as well as their target genes participate in pathophysiology processes in MS. Although the detailed mechanism of action of non-coding RNAs (ncRNAs, including miRNAs and lncRNAs) on neuroinflammation in MS has not been fully explained, several studies were conducted aiming to analyse their impact in MS. In this article, we review up-to-date knowledge on the latest research concerning the ncRNAs in MS and evaluate their role in neuroinflammation. We also point out the most promising ncRNAs which may be promising in MS as diagnostic and prognostic biomarkers

    Overexpression of SNTG2, TRAF3IP2, and ITGA6 transcripts is associated with osteoporotic vertebral fracture in elderly women from community

    No full text
    Abstract Background Vertebral fractures (VFs) are the most common clinical manifestation of osteoporosis associated with high morbimortality. A personal/familiar history of fractures increases the risk of fractures. The purpose of this study is to identify possible molecular markers associated with osteoporotic VFs in elderly women from community. Methods Transcriptomic analysis using Affymetrix HTA2 microarray was performed using whole blood samples of 240 subjects from a population‐based survey (Sao Paulo Ageing & Health [SPAH] study). Only elderly women with osteoporosis diagnosis by densitometry were analyzed, and divided in two groups: VF: women with osteoporosis and VFs versus no vertebral fracture (NVF): women with osteoporosis and NVFs. They were matched for age, chronic disease, medication use, and bone mineral density (BMD). The logistic regression model adjusted for age was applied for transcriptome data analysis. SYBR green‐based quantitative polymerase chain reaction (qPCR) was used to validate the most significant expression changes obtained in the microarray experiment. Results Microarray analysis identified 142 differentially expressed genes (DEGs, p < .01), 57 upregulated and 85 downregulated, compared VF versus NVF groups. The DEG with the greatest expression difference was the Gamma2‐Syntrophin (SNTG2) (β = 31.88, p = .005). Validation by qPCR confirmed increased expression in VF group of Syntrophin (SNTG2, fold change = 2.79, p = .009), TRAF3 Interacting Protein2 (TRAF3IP2, fold change = 2.79, p = .020), and Integrin Subunit Alpha 6 (ITGA6, fold change = 2.86, p = .038). Conclusion Our data identified and validated the association of SNTG2 (608715), TRAF3IP2 (607043), and ITGA6 (147556) with osteoporotic VF in elderly women, independently of BMD. These results suggest that these transcripts have potential clinical significance and may help to explain the molecular mechanisms and biological functions of vertebral fracture
    corecore