13 research outputs found

    Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome

    Get PDF
    The interferon (IFN) signature is related to disease activity and vascular disease in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) and represents a promising therapeutic target. Quantification of the IFN signature is currently performed by gene expression analysis, limiting its current applicability in clinical practice. Therefore, the objective of this study was to establish an easy to measure biomarker for the IFN signature

    Histone modifications underlie monocyte dysregulation in patients with systemic sclerosis, underlining the treatment potential of epigenetic targeting.

    Get PDF
    Background and objective S ystemic sclerosis (SSc) is a severe autoimmune disease, in which the pathogenesis is dependent on both genetic and epigenetic factors. Altered gene expression in SSc monocytes, particularly of interferon (IFN)-responsive genes, suggests their involvement in SSc development. We investigated the correlation between epigenetic histone marks and gene expression in SSc monocytes. Methods C hromatin immunoprecipitation followed by sequencing (ChIPseq) for histone marks H3K4me3 and H3K27ac was performed on monocytes of nine healthy controls and 14 patients with SSc. RNA sequencing was performed in parallel to identify aberrantly expressed genes and their correlation with the levels of H3K4me3 and H3K27ac located nearby their transcription start sites. ChIP-qPCR assays were used to verify the role of bromodomain proteins, H3K27ac and STATs on IFNresponsive gene expression. Results 1046 and 534 genomic loci showed aberrant H3K4me3 and H3K27ac marks, respectively, in SSc monocytes. The expression of 381 genes was directly and significantly proportional to the levels of such chromatin marks present near their transcription start site. Genes correlated to altered histone marks were enriched for immune, IFN and antiviral pathways and presented with recurrent binding sites for IRF and STAT transcription factors at their promoters. IFN\u3b1 induced the binding of STAT1 and STAT2 at the promoter of two of these genes, while blocking acetylation readers using the bromodomain BET family inhibitor JQ1 suppressed their expression. Conclusion SS c monocytes have altered chromatin marks correlating with their IFN signature. Enzymes modulating these reversible marks may provide interesting therapeutic targets to restore monocyte homeostasis to treat or even prevent SSc

    Association of MicroRNA-618 Expression With Altered Frequency and Activation of Plasmacytoid Dendritic Cells in Patients With Systemic Sclerosis

    Get PDF
    Objective. Plasmacytoid dendritic cells (PDCs) are a critical source of type I interferons (IFNs) that can contribute to the onset and maintenance of autoimmunity. Molecular mechanisms leading to PDC dysregulation and a persistent type I IFN signature are largely unexplored, especially in patients with systemic sclerosis (SSc), a disease in which PDCs infiltrate fibrotic skin lesions and produce higher levels of IFN alpha than those in healthy controls. This study was undertaken to investigate potential microRNA (miRNA)-mediated epigenetic mechanisms underlying PDC dysregulation and type I IFN production in SSc.Methods. We performed miRNA expression profiling and validation in highly purified PDCs obtained from the peripheral blood of 3 independent cohorts of healthy controls and SSc patients. Possible functions of miRNA-618 (miR-618) on PDC biology were identified by overexpression in healthy PDCs.Results. Expression of miR-618 was up-regulated in PDCs from SSc patients, including those with early disease who did not present with skin fibrosis. IFN regulatory factor 8, a crucial transcription factor for PDC development and activation, was identified as a target of miR-618. Overexpression of miR-618 reduced the development of PDCs from CD34+ cells in vitro and enhanced their ability to secrete IFN alpha, mimicking the PDC phenotype observed in SSc patients.Conclusion. Up-regulation of miR-618 suppresses the development of PDCs and increases their ability to secrete IFN alpha, potentially contributing to the type I IFN signature observed in SSc patients. Considering the importance of PDCs in the pathogenesis of SSc and other diseases characterized by a type I IFN signature, miR-618 potentially represents an important epigenetic target to regulate immune system homeostasis in these conditions

    Liver-Specific Commd1 Knockout Mice Are Susceptible to Hepatic Copper Accumulation

    Get PDF
    Canine copper toxicosis is an autosomal recessive disorder characterized by hepatic copper accumulation resulting in liver fibrosis and eventually cirrhosis. We have identified COMMD1 as the gene underlying copper toxicosis in Bedlington terriers. Although recent studies suggest that COMMD1 regulates hepatic copper export via an interaction with the Wilson disease protein ATP7B, its importance in hepatic copper homeostasis is ill-defined. In this study, we aimed to assess the effect of Commd1 deficiency on hepatic copper metabolism in mice. Liver-specific Commd1 knockout mice (Commd1Δhep) were generated and fed either a standard or a copper-enriched diet. Copper homeostasis and liver function were determined in Commd1Δhep mice by biochemical and histological analyses, and compared to wild-type littermates. Commd1Δhep mice were viable and did not develop an overt phenotype. At six weeks, the liver copper contents was increased up to a 3-fold upon Commd1 deficiency, but declined with age to concentrations similar to those seen in controls. Interestingly, Commd1Δhep mice fed a copper-enriched diet progressively accumulated copper in the liver up to a 20-fold increase compared to controls. These copper levels did not result in significant induction of the copper-responsive genes metallothionein I and II, neither was there evidence of biochemical liver injury nor overt liver pathology. The biosynthesis of ceruloplasmin was clearly augmented with age in Commd1Δhep mice. Although COMMD1 expression is associated with changes in ATP7B protein stability, no clear correlation between Atp7b levels and copper accumulation in Commd1Δhep mice could be detected. Despite the absence of hepatocellular toxicity in Commd1Δhep mice, the changes in liver copper displayed several parallels with copper toxicosis in Bedlington terriers. Thus, these results provide the first genetic evidence for COMMD1 to play an essential role in hepatic copper homeostasis and present a valuable mouse model for further understanding of the molecular mechanisms underlying hepatic copper homeostasis

    Telomere quantification in frontal and temporal brain tissue of patients with schizophrenia

    No full text
    Recent imaging studies have suggested that accelerated aging occurs in schizophrenia. However, the exact cause of these findings is still unclear. In this study we measured telomere length, a marker for cell senescence, in gray and white matter brain tissue from the medial frontal gyrus (MFG) and superior temporal gyrus (STG) of 9 patients with schizophrenia and 11 controls. No alterations in telomere length were found in MFG gray and white matter and in STG gray matter. A significant reduction in telomere length was observed in STG white matter of patients with schizophrenia as compared to controls (fold change of −0.42, U = 5, P = 0.008). Our results support previous findings that telomere length in gray matter is not affected, whereas they suggest that increased cell senescence may affect white matter temporal brain tissue

    Rescue of defective ATP8B1 trafficking by CFTR correctors as a therapeutic strategy for familial intrahepatic cholestasis

    No full text
    Background & Aims ATP8B1 deficiency is an autosomal recessive liver disease characterized by intrahepatic cholestasis. ATP8B1 mutation p.I661T, the most frequent mutation in European patients, results in protein misfolding and impaired targeting to the plasma membrane. Similarly, mutations in cystic fibrosis transmembrane conductance regulator (CFTR), associated with cystic fibrosis, impair protein folding and trafficking. The aim of this study was to investigate whether compounds that rescue CFTR F508del trafficking are capable of improving p.I661T-ATP8B1 plasma membrane expression. Methods The effect of CFTR corrector compounds on plasma membrane expression of p.I661T-ATP8B1 was evaluated by cell surface biotinylation and immunofluorescence. ATPase activity was evaluated of a purified analogue protein carrying a mutation at the matching position (p.L622T-ATP8A2). Results The clinically used compounds, 4-phenylbutyric acid (4-PBA), suberoylanilide hydroxamic acid (SAHA) and N-butyldeoxynojirimycin (NB-DNJ) improved p.I661T-ATP8B1 plasma membrane targeting. Compounds C4, C5, C13 and C17 also significantly increased plasma membrane expression of p.I661T-ATP8B1. SAHA and compound C17 upregulated ATP8B1 transcription. p.I661T-ATP8B1 was partly targeted to the canalicular membrane in polarized cells, which became more evident upon treatment with SAHA and/or C4. p.L622T-ATP8A2 showed phospholipid-induced ATPase activity, suggesting that mutations at a matching position in ATP8B1 do not block functionality. Combination therapy of SAHA and compound C4 resulted in an additional improvement of ATP8B1 cell surface abundance. Conclusions This study shows that several CFTR correctors can improve trafficking of p.I661T-ATP8B1 to the plasma membrane in vitro. Hence, these compounds may be suitable to be part of a future therapy for ATP8B1 deficiency and other genetic disorders associated with protein misfolding. Lay Summary Compounds that improve the cellular machinery dealing with protein homeostasis (proteostasis) and allow for proper folding of proteins with (mild) missense mutations are called proteostasis regulators (Balch, Science 2008). Such compounds are potentially of high therapeutic value for many (liver) diseases. In this manuscript, we investigated whether compounds identified in screens as CFTR folding correctors are actually proteostasis regulators and thus have a broader application in other protein folding diseases. Using these compounds, we could indeed show improved trafficking to the (apical) plasma membrane of a mutated ATP8B1 protein, carrying the p.I661T missense mutation. This is the most frequently identified mutation in this rare cholestatic disorder. Importantly, ATP8B1 shows no similarity to CFTR. These data are important in providing support for the concept that rare, genetic liver diseases can potentially be treated using a generalized strategy

    Heteromeric Interactions Required for Abundance and Subcellular Localization of Human CDC50 Proteins and Class 1 P4-ATPases*

    No full text
    Members of the P4 family of P-type ATPases (P4-ATPases) are believed to function as phospholipid flippases in complex with CDC50 proteins. Mutations in the human class 1 P4-ATPase gene ATP8B1 cause a severe syndrome characterized by impaired bile flow (intrahepatic cholestasis), often leading to end-stage liver failure in childhood. In this study, we determined the specificity of human class 1 P4-ATPase interactions with CDC50 proteins and the functional consequences of these interactions on protein abundance and localization of both protein classes. ATP8B1 and ATP8B2 co-immunoprecipitated with CDC50A and CDC50B, whereas ATP8B4, ATP8A1, and ATP8A2 associated only with CDC50A. ATP8B1 shifted from the endoplasmic reticulum (ER) to the plasma membrane upon coexpression of CDC50A or CDC50B. ATP8A1 and ATP8A2 translocated from the ER to the Golgi complex and plasma membrane upon coexpression of CDC50A, but not CDC50B. ATP8B2 and ATP8B4 already displayed partial plasma membrane localization in the absence of CDC50 coexpression but displayed a large increase in plasma membrane abundance upon coexpression of CDC50A. ATP8B3 did not bind CDC50A and CDC50B and was invariably present in the ER. Our data show that interactions between CDC50 proteins and class 1 P4-ATPases are essential for ER exit and stability of both subunits. Furthermore, the subcellular localization of the complex is determined by the P4-ATPase, not the CDC50 protein. The interactions of CDC50A and CDC50B with multiple members of the human P4-ATPase family suggest that these proteins perform broader functions in human physiology than thus far assumed

    Impaired uptake of conjugated bile acids and hepatitis b virus pres1-binding in na(+) -taurocholate cotransporting polypeptide knockout mice

    Full text link
    UNLABELLED: The Na(+) -taurocholate cotransporting polypeptide (NTCP) mediates uptake of conjugated bile acids (BAs) and is localized at the basolateral membrane of hepatocytes. It has recently been recognized as the receptor mediating hepatocyte-specific entry of hepatitis B virus and hepatitis delta virus. Myrcludex B, a peptide inhibitor of hepatitis B virus entry, is assumed to specifically target NTCP. Here, we investigated BA transport and Myrcludex B binding in the first Slc10a1-knockout mouse model (Slc10a1 encodes NTCP). Primary Slc10a1(-/-) hepatocytes showed absence of sodium-dependent taurocholic acid uptake, whereas sodium-independent taurocholic acid uptake was unchanged. In vivo, this was manifested as a decreased serum BA clearance in all knockout mice. In a subset of mice, NTCP deficiency resulted in markedly elevated total serum BA concentrations, mainly composed of conjugated BAs. The hypercholanemic phenotype was rapidly triggered by a diet supplemented with ursodeoxycholic acid. Biliary BA output remained intact, while fecal BA excretion was reduced in hypercholanemic Slc10a1(-/-) mice, explained by increased Asbt and Ostα/β expression. These mice further showed reduced Asbt expression in the kidney and increased renal BA excretion. Hepatic uptake of conjugated BAs was potentially affected by down-regulation of OATP1A1 and up-regulation of OATP1A4. Furthermore, sodium-dependent taurocholic acid uptake was inhibited by Myrcludex B in wild-type hepatocytes, while Slc10a1(-/-) hepatocytes were insensitive to Myrcludex B. Finally, positron emission tomography showed a complete abrogation of hepatic binding of labeled Myrcludex B in Slc10a1(-/-) mice. CONCLUSION: The Slc10a1-knockout mouse model supports the central role of NTCP in hepatic uptake of conjugated BAs and hepatitis B virus preS1/Myrcludex B binding in vivo; the NTCP-independent hepatic BA uptake machinery maintains a (slower) enterohepatic circulation of BAs, although it is occasionally insufficient to clear BAs from the circulation. (Hepatology 2015;62:207-219)
    corecore