11 research outputs found

    How to run a brain bank. A report from the Austro-German brain bank

    Get PDF
    The sophisticated analysis of and growing information on the human brain requires that acquisition, dissection, storage and distribution of rare material are managed in a professional way. In this publication we present the concept and practice of our brain bank. Both brain tissue and information are handled by standardized procedures and flow in parallel from pathology to neuropathology and neurochemistry. Data concerning brain material are updated with clinical information gained by standardized procedures

    Association of a Functional NOS1 Promoter Repeat with Alzheimer's Disease in the VITA Cohort

    No full text
    NO synthase, type I (NOS-I) has been suggested to play a role in the etiology of Alzheimer's disease (AD). The gene encoding NOS-I harbors at least nine alternative first exons; in the promoter region of exon 1f, a polymorphic repeat (NOS1 ex1f-VNTR) has been described which influences gene expression and neuronal transcriptome. We have shown that short alleles of this repeat are associated with AD. Here, we sought to further explore this finding by investigating a longitudinal cohort sample from the Vienna-Transdanube-Aging (VITA) study consisting of 606 subjects enrolled at the age of 75 (of these, genotypes were available for 574 subjects) and followed up for 60 months. The ex1f-VNTR risk genotype was associated with AD in the total sample and at the second follow-up. Thus, either long alleles of NOS1 ex1f-VNTR are protective against disease or conversely, short alleles predispose to earlier onset of disease. As demonstrated, ex1f-VNTR interacted with the apolipoprotein E ε4 risk allele (OR in the presence of both risk alleles 3.63; 95% CI: 1.45-9.12). These findings provide further evidence for an association of NOS1 with AD

    Association of a functional NOS1 promoter repeat with Alzheimer's disease in the VITA cohort

    Full text link
    NO synthase, type I (NOS-I) has been suggested to play a role in the etiology of Alzheimer's disease (AD). The gene encoding NOS-I harbors at least nine alternative first exons; in the promoter region of exon 1f, a polymorphic repeat (NOS1 ex1f-VNTR) has been described which influences gene expression and neuronal transcriptome. We have shown that short alleles of this repeat are associated with AD. Here, we sought to further explore this finding by investigating a longitudinal cohort sample from the Vienna-Transdanube-Aging (VITA) study consisting of 606 subjects enrolled at the age of 75 (of these, genotypes were available for 574 subjects) and followed up for 60 months. The ex1f-VNTR risk genotype was associated with AD in the total sample and at the second follow-up. Thus, either long alleles of NOS1 ex1f-VNTR are protective against disease or conversely, short alleles predispose to earlier onset of disease. As demonstrated, ex1f-VNTR interacted with the apolipoprotein E ε4 risk allele (OR in the presence of both risk alleles 3.63; 95% CI: 1.45-9.12). These findings provide further evidence for an association of NOS1 with AD

    Genetic risk factors and markers for Alzheimer's disease and/or depression in the VITA study

    Full text link
    OBJECTIVES: In ageing population, both Alzheimer's disease (AD) and depression are common. Significant depressive symptoms are often co-morbid with cognitive impairment and dementia. In this study, we attempted to find various factors and markers for both AD and depression in a longitudinal cohort, the Vienna-Transdanube-Aging (VITA)-study. METHODS: The VITA-Study consisted of 305 healthy subjects, 174 subjects with depression only, 55 subjects diagnosed with AD only and 72 subjects with depression as well as AD. Associations between AD and/or depression to gene polymorphisms APO E (epsilon4), choline acetyltransferase (ChAT) 4G to A, serotonin-transporter gene promoter-length, dopamine-D4-receptor, ciliary-neurotrophic-factor-null mutation and brain-derived neurotrophic factor (C270T) and to various known factors were analyzed. RESULTS: AD and depression were significant associated. Significant risk factors found for AD were low education, low folic acid and depressive-symptoms, while for depression were low education and higher nonsteroidal anti-inflammatory drugs (NSAID) consume. Moreover, the ChAT polymorphism associated significant to depression. Gender, education, and ChAT significantly associated with the combination AD and/or depression. CONCLUSION: Such studies must be conducted cautiously, as co-morbidities and gene-environmental-social influences may sway the results dramatically. We found in the VITA-study significant association between depression and AD and between ChAT polymorphism and depression

    Genetic variation in the choline O-acetyltransferase gene in depression and Alzheimer's disease: the VITA and Milano studies

    Full text link
    Linkage studies point to the long arm of chromosome 10 being a susceptibility region for Alzheimer's disease (AD). Additionally, the gene choline O-acetyltransferase (CHAT) located on chromosome 10 was discussed for conveying risk towards AD, but the results are ambiguous. We examined a possible association of nineteen single-nucleotide polymorphisms (SNPs) in the CHAT gene in a longitudinal cohort study, the Vienna Tansdanube Aging (VITA)-study, in which all subjects were 75 years old at baseline. For replication, we used a more heterogeneous case-control sample from Milano with early and late AD. Nominal allelic and genotypic associations with AD risk in the cross-sectional VITA sample were found for rs3810950 (p = 0.038 for genotype, OR = 1.66 95% CI 1.03-2.68, p = 0.052 allele-wise). When combining both VITA- and Milano study rs3810950 was significantly associated with AD (p(combined) = 0.01634; power = 82%). This association was highly significant for APOEε4 carriers (p = 0.009 for genotype, OR = 3.21 95% CI 1.43-7.19 p = 0.007 allele-wise). Furthermore, an association of rs1880676 with AD was specific to carriers of the APOEε4 risk allele (p = 0.008, genotype; OR = 3.47 95% CI 1.50-8.01 p = 0.005 allele-wise). For depressive symptoms, we found a nominally significant association of rs3810950 with minor and major depression (p = 0.023, genotype; p = 0.008, allele). Applying Benjamini and Hochberg correction these associations could not be confirmed and also not be replicated in the more heterogeneous Milano sample. While our data therefore do not seem to support a major role for CHAT genetic variation in geriatric depression and AD, there might be a minor contribution in geriatric patients with depression and late onset AD, in particular those carrying the APOEε4 genotype
    corecore