45 research outputs found

    The genetic organisation of prokaryotic two-component system signalling pathways

    Get PDF
    BACKGROUND: Two-component systems (TCSs) are modular and diverse signalling pathways, involving a stimulus-responsive transfer of phosphoryl groups from transmitter to partner receiver domains. TCS gene and domain organisation are both potentially informative regarding biological function, interaction partnerships and molecular mechanisms. However, there is currently little understanding of the relationships between domain architecture, gene organisation and TCS pathway structure. RESULTS: Here we classify the gene and domain organisation of TCS gene loci from 1405 prokaryotic replicons (>40,000 TCS proteins). We find that 200 bp is the most appropriate distance cut-off for defining whether two TCS genes are functionally linked. More than 90% of all TCS gene loci encode just one or two transmitter and/or receiver domains, however numerous other geometries exist, often with large numbers of encoded TCS domains. Such information provides insights into the distribution of TCS domains between genes, and within genes. As expected, the organisation of TCS genes and domains is affected by phylogeny, and plasmid-encoded TCS exhibit differences in organisation from their chromosomally-encoded counterparts. CONCLUSIONS: We provide here an overview of the genomic and genetic organisation of TCS domains, as a resource for further research. We also propose novel metrics that build upon TCS gene/domain organisation data and allow comparisons between genomic complements of TCSs. In particular, 'percentage orphaned TCS genes' (or 'Dissemination') and 'percentage of complex loci' (or 'Sophistication') appear to be useful discriminators, and to reflect mechanistic aspects of TCS organisation not captured by existing metrics

    P2CS: a database of prokaryotic two-component systems

    Get PDF
    P2CS (http://www.p2cs.org) is a specialized database for prokaryotic two-component systems (TCSs), virtually ubiquitous signalling proteins which regulate a wide range of physiological processes. The primary aim of the database is to annotate and classify TCS proteins from completely sequenced prokaryotic genomes and metagenomes. Information within P2CS can be accessed through a variety of routes—TCS complements can be browsed by metagenome, replicon or sequence cluster (and these genesets are available for download by users). Alternatively a variety of database-wide or taxon-specific searches are supported. Each TCS protein is fully annotated with sequence-feature information including replicon context, while properties of the predicted proteins can be queried against several external prediction servers to suggest homologues, interaction networks, sub-cellular localization and domain complements. Another unique feature of P2CS is the analysis of ORFeomes to identify TCS genes missed during genome annotation. Recent innovations for P2CS include a CGView representation of the distribution of TCS genes around a replicon, categorization of TCS genes based on gene organization, an expanded domain-based classification scheme, a P2CS ‘gene cart’ and categorization on the basis of sequence clusters

    Spatial simulations of myxobacterial development

    Get PDF
    Understanding how relatively simple, single cell bacteria can communicate and coordinate their actions is important for explaining how complex multicellular behaviour can emerge without a central controller. Myxobacteria are particularly interesting in this respect because cells undergo multiple phases of coordinated behaviour during their life-cycle. One of the most fascinating and complex phases is the formation of fruiting bodies—large multicellular aggregates of cells formed in response to starvation. In this article we use evidence from the latest experimental data to construct a computational model explaining how cells can form fruiting bodies. Both in our model and in nature, cells move together in dense swarms, which collide to form aggregation centres. In particular, we show that it is possible for aggregates to form spontaneously where previous models require artificially induced aggregates to start the fruiting process

    P2CS: a two-component system resource for prokaryotic signal transduction research

    Get PDF
    BACKGROUND: With the escalation of high throughput prokaryotic genome sequencing, there is an ever-increasing need for databases that characterise, catalogue and present data relating to particular gene sets and genomes/metagenomes. Two-component system (TCS) signal transduction pathways are the dominant mechanisms by which micro-organisms sense and respond to external as well as internal environmental changes. These systems respond to a wide range of stimuli by triggering diverse physiological adjustments, including alterations in gene expression, enzymatic reactions, or protein-protein interactions. DESCRIPTION: We present P2CS (Prokaryotic 2-Component Systems), an integrated and comprehensive database of TCS signal transduction proteins, which contains a compilation of the TCS genes within 755 completely sequenced prokaryotic genomes and 39 metagenomes. P2CS provides detailed annotation of each TCS gene including family classification, sequence features, functional domains, as well as genomic context visualization. To bypass the generic problem of gene underestimation during genome annotation, we also constituted and searched an ORFeome, which improves the recovery of TCS proteins compared to searches on the equivalent proteomes. CONCLUSION: P2CS has been developed for computational analysis of the modular TCSs of prokaryotic genomes and metagenomes. It provides a complete overview of information on TCSs, including predicted candidate proteins and probable proteins, which need further curation/validation. The database can be browsed and queried with a user-friendly web interface at

    A Pilot Study of total Personal Exposure to Volatile organic Compounds among Hispanic Female Domestic Cleaners

    Get PDF
    Cleaners have an elevated risk for the development or exacerbation of asthma and other respiratory conditions, possibly due to exposure to cleaning products containing volatile organic compounds (VOCs) leading to inflammation and oxidative stress. This pilot study aimed to quantify total personal exposure to VOCs and to assess biomarkers of inflammation and pulmonary oxidative stress in 15 predominantly Hispanic women working as domestic cleaners in San Antonio, Texas, between November 2019 and July 2020. In partnership with a community organization, Domésticas Unidas, recruited women were invited to attend a training session where they were provided 3M 3500 passive organic vapor monitors (badges) and began a 72-hr sampling period during which they were instructed to wear one badge during the entire period ( AT, fo

    Identification of Asp174 and Asp175 as the Key Catalytic Residues of Human O-GlcNAcase by Functional Analysis of Site-Directed Mutants

    Get PDF
    O-GlcNAcase is a family 84 â-N-acetylglucosaminidase catalyzing the hydrolytic cleavage of â-O-linked 2-acetamido-2-deoxy-D-glycopyranose (O-GlcNAc) from serine and threonine residues of posttranslationally modified proteins. O-GlcNAcases use a double-displacement mechanism involving formation and breakdown of a transient bicyclic oxazoline intermediate. The key catalytic residues of any family 84 enzyme facilitating this reaction, however, are unknown. Two mutants of human O-GlcNAcase, D174A and D175A, were generated since these residues are highly conserved among family 84 glycoside hydrolases. Structure-reactivity studies of the D174A mutant enzyme reveals severely impaired catalytic activity across a broad range of substrates alongside a pH-activity profile consistent with deletion of a key catalytic residue. The D175A mutant enzyme shows a significant decrease in catalytic efficiency with substrates bearing poor leaving groups (up to 3000-fold), while for substates bearing good leading groups the difference is much smaller (7-fold). This mutant enzyme also cleaves thioglycosides with essentially the same catalytic efficiency as the wild-type enzyme. As well, addition of azide as an exogenous nucleophile increases the activity of this enzyme toward a substrate bearing an excellent leaving group. Together, these results allow unambiguous assignment of Asp174 as the residue that polarizes the 2-acetamido group for attack on the anomeric center and Asp175 as the residue that functions as the general acid/base catalyst. Therefore, the family 84 glycoside hydrolases use a DD catalytic pair to effect catalysis

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Evolution of relative reading frame bias in unidirectional prokaryotic gene overlaps

    No full text
    Pairs of unidirectional (same strand) genes can overlap in one of two phases (relative reading frames). There is a striking bias in the relative abundance of prokaryotic gene overlaps in the two possible phases. A simple model is presented based on unidirectional gene overlaps evolving from nonoverlapping gene pairs, through the adoption of alternative start codons by the downstream genes. Potential alternative start codons within upstream gene sequences were found to occur at greater frequencies in one phase, corresponding to the most prevalent phase of gene overlaps. We therefore suggest that the phase bias of overlapping genes is primarily a consequence of the N-terminal extension of downstream genes through adoption of new start codons

    Protein-protein interactions between two-component system transmitter and receiver domains of Myxococcus xanthus

    No full text
    We present a novel dataset assessing the specificity of protein-protein interactions between 69 transmitter and receiver domains from two-component system (TCS)-signalling pathways. TCS require a conserved protein-protein interaction between partner transmitter and receiver domains for signal transduction. The complex prokaryote Myxococcus xanthus possesses an unusually large number of TCS genes, many of which have no obvious interaction partners. Interactions between TCS domains of M. xanthus were assessed using a yeast two-hybrid assay, in which domains were expressed as both bait and prey translational fusions. LacZ production was monitored as an indicator of protein-protein interaction, and the strength of interactions classified as weak, medium or strong. Two-hundred and fifty-five transmitter-receiver domain interactions were observed (46 strong), allowing identification of potential signalling partners for individual M. xanthus TCS proteins. In addition, the dataset provides interesting 'meta' information. For instance, many strong interactions were identified between different transmitter domain pairs (34) and receiver domain pairs (23), suggesting a surprisingly large degree of heterodimerisation of these domains. Proteins in our dataset that exhibited similar 'profiles' of interactions, often shared a similar biological function, suggesting that interaction profiles can provide information on biological function, even considering sets of homologous domains
    corecore