2,402 research outputs found

    HST Observations of the Double-Peaked Emission Lines in the Seyfert Galaxy Markarian 78: Mass Outflows from a Single AGN

    Full text link
    Previous ground based observations of the Seyfert 2 galaxy Mrk 78 revealed a double set of emission lines, similar to those seen in several AGN from recent surveys. Are the double lines due to two AGN with different radial velocities in the same galaxy, or are they due to mass outflows from a single AGN?We present a study of the outflowing ionized gas in the resolved narrow-line region (NLR) of Mrk 78 using observations from Space Telescope Imaging Spectrograph (STIS) and Faint Object Camera (FOC) aboard the Hubble Space Telescope(HST) as part of an ongoing project to determine the kinematics and geometries of active galactic nuclei (AGN) outflows. From the spectroscopic information, we deter- mined the fundamental geometry of the outflow via our kinematics modeling program by recreating radial velocities to fit those seen in four different STIS slit positions. We determined that the double emission lines seen in ground-based spectra are due to an asymmetric distribution of outflowing gas in the NLR. By successfully fitting a model for a single AGN to Mrk 78, we show that it is possible to explain double emission lines with radial velocity offsets seen in AGN similar to Mrk 78 without requiring dual supermassive black holes.Comment: 22 pages, 7 figures (2 color), accepted for publication in The Astrophysical Journa

    Estimation and optimal designing under latent variable models for paired comparisons studies via a multiplicative algorithm

    Get PDF
    We consider:<BR/> 1. The problem of estimating the parameters of latent variable models such as the Bradley Terry or Thurstone Model by the method of maximum likelihood, given data from a paired comparisons experiment. The parameters of these models can be taken to be weights which are positive and sum to one;<BR/> 2. The problem of determining approximate locally optimal designs for good estimation of these parameters; i.e of determining optimal design weights which are also positive and sum to one

    The Yang Lee Edge Singularity on Feynman Diagrams

    Get PDF
    We investigate the Yang-Lee edge singularity on non-planar random graphs, which we consider as the Feynman Diagrams of various d=0 field theories, in order to determine the value of the edge exponent. We consider the hard dimer model on phi3 and phi4 random graphs to test the universality of the exponent with respect to coordination number, and the Ising model in an external field to test its temperature independence. The results here for generic (``thin'') random graphs provide an interesting counterpoint to the discussion by Staudacher of these models on planar random graphs.Comment: LaTeX, 6 pages + 3 figure

    Granger causality and transfer entropy are equivalent for Gaussian variables

    Full text link
    Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. Developed originally in the field of econometrics, it has since found application in a broader arena, particularly in neuroscience. More recently transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes, has gained traction in a similarly wide field. While it has been recognized that the two concepts must be related, the exact relationship has until now not been formally described. Here we show that for Gaussian variables, Granger causality and transfer entropy are entirely equivalent, thus bridging autoregressive and information-theoretic approaches to data-driven causal inference.Comment: In review, Phys. Rev. Lett., Nov. 200

    Multivariate Granger Causality and Generalized Variance

    Get PDF
    Granger causality analysis is a popular method for inference on directed interactions in complex systems of many variables. A shortcoming of the standard framework for Granger causality is that it only allows for examination of interactions between single (univariate) variables within a system, perhaps conditioned on other variables. However, interactions do not necessarily take place between single variables, but may occur among groups, or "ensembles", of variables. In this study we establish a principled framework for Granger causality in the context of causal interactions among two or more multivariate sets of variables. Building on Geweke's seminal 1982 work, we offer new justifications for one particular form of multivariate Granger causality based on the generalized variances of residual errors. Taken together, our results support a comprehensive and theoretically consistent extension of Granger causality to the multivariate case. Treated individually, they highlight several specific advantages of the generalized variance measure, which we illustrate using applications in neuroscience as an example. We further show how the measure can be used to define "partial" Granger causality in the multivariate context and we also motivate reformulations of "causal density" and "Granger autonomy". Our results are directly applicable to experimental data and promise to reveal new types of functional relations in complex systems, neural and otherwise.Comment: added 1 reference, minor change to discussion, typos corrected; 28 pages, 3 figures, 1 table, LaTe

    The Resolved Narrow Line Region in NGC4151

    Full text link
    We present slitless spectra of the Narrow Line Region (NLR) in NGC4151 from the Space Telescope Imaging Spectrograph (STIS) on HST, and investigate the kinematics and physical conditions of the emission line clouds in this region. Using medium resolution (~0.5 Angstrom) slitless spectra at two roll angles and narrow band undispersed images, we have mapped the NLR velocity field from 1.2 kpc to within 13 pc (H_o=75 km/s/Mpc) of the nucleus. The inner biconical cloud distribution exhibits recessional velocities relative to the nucleus to the NE and approaching velocities to the SW of the nucleus. We find evidence for at least two kinematic components in the NLR. One kinematic component is characterized by Low Velocities and Low Velocity Dispersions (LVLVD clouds: |v| < 400 km/s, and Delta_v < 130 km/s). This population extends through the NLR and their observed kinematics may be gravitationally associated with the host galaxy. Another component is characterized by High Velocities and High Velocity Dispersions (HVHVD clouds: 400 130 km/s). This set of clouds is located within 1.1 arcsec (~70pc) of the nucleus and has radial velocities which are too high to be gravitational in origin, but show no strong correlation between velocity or velocity dispersion and the position of the radio knots. Outflow scenarios will be discussed as the driving mechanism for these HVHVD clouds.Comment: 38 pages, 14 figures, accepted by ApJ. For higher resolution images see http://www.pha.jhu.edu/~kaiser

    Probing the Ionizing Continuum of Narrow-Line Seyfert 1 Galaxies. I.Observational Results

    Full text link
    We present optical spectra and emission-line ratios of 12 Narrow-Line Seyfert 1 (NLS1) galaxies that we observed to study the ionizing EUV continuum. A common feature in the EUV continuum of active galactic nuclei is the big blue bump (BBB), generally associated with thermal accretion disk emission. While Galactic absorption prevents direct access to the EUV range, it can be mapped by measuring the strength of a variety of forbidden optical emission lines that respond to different EUV continuum regions. We find that narrow emission-line ratios involving [OII]3727, Hbeta, [OIII]5007, [OI]6300, Halpha,[NII]6583, and [SII]6716,6731 indicate no significant difference between NLS1s and Broad-Line Seyfert 1 (BLS1) galaxies, which suggests that the spectral energy distributions of their ionizing EUV - soft X-ray continua are similar. The relative strength of important forbidden high ionization lines like [NeV]3426 compared to HeII4686 and the relative strength of [FeX]6374 appear to show the same range as in BLS1 galaxies. However, a trend of weaker F([OI]6300)/F(Halpha) emission-line ratios is indicated for NLS1s compared to BLS1s. To recover the broad emission-line profiles we used Gaussian components. This approach indicates that the broad Hbeta profile can be well described with a broad component (FWHM = 3275 +- 800 km/s) and an intermediate broad component (FWHM = 1200 +- 300 km/s). The width of the broad component is in the typical range of normal BLS1s. The emission-line flux that is associated with the broad component in these NLS1s amounts to at least 60% of the total flux. Thus it dominates the total line flux, similar to BLS1 galaxies.Comment: 34 pages, 9 figures. accepted for publication in the Astrophys.Journa

    Physical Conditions in the Narrow-Line Region of M51

    Full text link
    We have investigated the physical conditions in the narrow-line region (NLR) of M51 using long-slit spectra obtained with the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST) and 3.6 cm radio continuum observations obtained with the Very Large Array (VLA). Emission-line diagnostics were employed for nine NLR clouds, which extend 2.5" (102 pc) from the nucleus, to examine the electron density, temperature, and ionization state of the NLR gas. The emission-line ratios are consistent with those typically found in Seyfert nuclei and indicate that within the inner near-nuclear region (r ~< 1") the ionization decreases with increasing radius. Upper-limits to the [O III] electron temperature (T ~< 11,000 K) for the inner NLR clouds indicate that photoionization is the dominant ionization mechanism close to the nucleus. The emission-line fluxes for most of the NLR clouds can be reproduced reasonably well by simple photoionization models using a central power-law continuum source and supersolar nitrogen abundances. Shock+precursor models, however, provide a better fit to the observed fluxes of an NLR cloud ~2.5" south of the nucleus that is identified with the extra-nuclear cloud (XNC). The large [O III] electron temperature of this cloud (T = 24,000 K) further suggests the presence of shocks. This cloud is straddled by two radio knots and lies near the location where a weak radio jet, ~2.5" (102pc) in extent, connects the near-nuclear radio emission with a diffuse lobe structure spanning \~4" (163 pc). It is plausible that this cloud represents the location where the radio jet impinges on the disk ISM.Comment: 25 pages, 26 figures (9 color), 7 tables. Accepted for publication in the Astrophysical Journa

    The sharpest view on the high-mass star-forming region S255IR. Near-InfraRed Adaptive Optics Imaging on the Outbursting Source NIRS3

    Get PDF
    Massive stars have an impact on their surroundings from early in their formation until the end of their lives. However, very little is known about their formation. Episodic accretion may play a crucial role, but observations of these events have only been reported towards a handful of massive protostars. We aim to investigate the outburst event from the high-mass star-forming region S255IR where recently the protostar NIRS3 underwent an accretion outburst. We follow the evolution of this source both in photometry and morphology of its surroundings. Methods: We perform near-infrared adaptive optics observations on the S255IR central region using the Large Binocular Telescope in the Ks_{\rm s} broad-band and the H2_2 and Brγ\gamma narrow-band filters with an angular resolution of \sim0\farcs06, close to the diffraction limit. We discover a new near-infrared knot north-east from NIRS3 that we interpret as a jet knot that was ejected during the last accretion outburst and observed in the radio regime as part of a follow-up after the outburst. We measure a mean tangential velocity for this knot of 450±50 km s−1450\pm50\,\mathrm{km\,s^{-1}}. We analyse the continuum-subtracted images from H2_2 which traces jet shocked emission, and Brγ\gamma which traces scattered light from a combination of accretion activity and UV radiation from the central massive protostar. We observe a significant decrease in flux at the location of NIRS3, with K=13.48\,mag being the absolute minimum in the historic series. Our observations strongly suggest a scenario where the episodic accretion is followed by an episodic ejection response in the near-infrared, as it was seen in the earlier radio follow-up. The 30 years of ∼2 μm\sim2\,\mu{\rm m} photometry suggests that NIRS3 might have undergone another outburst in the late 1980s, being the first massive protostar with such evidence observed in the near-infrared.Comment: Accepted for publication in Astronomy and Astrophysics. 10 pages, 8 figure

    Prediction of Complications and Prognostication in Perioperative Medicine: A Systematic Review and PROBAST Assessment of Machine Learning Tools

    Get PDF
    Background: The utilization of artificial intelligence and machine learning as diagnostic and predictive tools in perioperative medicine holds great promise. Indeed, many studies have been performed in recent years to explore the potential. The purpose of this systematic review is to assess the current state of machine learning in perioperative medicine, its utility in prediction of complications and prognostication, and limitations related to bias and validation. Methods: A multidisciplinary team of clinicians and engineers conducted a systematic review using the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) protocol. Multiple databases were searched, including Scopus, Cumulative Index to Nursing and Allied Health Literature (CINAHL), the Cochrane Library, PubMed, Medline, Embase, and Web of Science. The systematic review focused on study design, type of machine learning model used, validation techniques applied, and reported model performance on prediction of complications and prognostication. This review further classified outcomes and machine learning applications using an ad hoc classification system. The Prediction model Risk Of Bias Assessment Tool (PROBAST) was used to assess risk of bias and applicability of the studies. Results: A total of 103 studies were identified. The models reported in the literature were primarily based on single-center validations (75%), with only 13% being externally validated across multiple centers. Most of the mortality models demonstrated a limited ability to discriminate and classify effectively. The PROBAST assessment indicated a high risk of systematic errors in predicted outcomes and artificial intelligence or machine learning applications. Conclusions: The findings indicate that the development of this field is still in its early stages. This systematic review indicates that application of machine learning in perioperative medicine is still at an early stage. While many studies suggest potential utility, several key challenges must be first overcome before their introduction into clinical practice
    • …
    corecore