8,445 research outputs found
Improvising Linguistic Style: Social and Affective Bases for Agent Personality
This paper introduces Linguistic Style Improvisation, a theory and set of
algorithms for improvisation of spoken utterances by artificial agents, with
applications to interactive story and dialogue systems. We argue that
linguistic style is a key aspect of character, and show how speech act
representations common in AI can provide abstract representations from which
computer characters can improvise. We show that the mechanisms proposed
introduce the possibility of socially oriented agents, meet the requirements
that lifelike characters be believable, and satisfy particular criteria for
improvisation proposed by Hayes-Roth.Comment: 10 pages, uses aaai.sty, lingmacros.sty, psfig.st
No two gangs are alike: The digital divide in street gangs’ differential adaptations to social media
© 2020 The Authors
Social media provide novel opportunities for street gangs to operate beyond their traditional borders to sell drugs, recruit members and control their territory, virtually and physically. Although social media have contributed to the means available to street gangs today, it does not mean that every gang agrees on their use. Drawing on different perspectives (ex-gang members, law enforcement) on gangs using a multi-method design in a London borough, the current study shows that social media have polarized gangs, resulting in two distinct types of digital adaptation. The proposed division of ‘digitalist’ and ‘traditionalist’ gangs is rooted in Thrasher's (1927) dictum that no two gangs are alike and explains how some gangs prefer to keep a low profile, thus, avoiding social media use. ‘Digitalists’, by contrast, prefer to use social media as a way to gain reputation and territorial expansion. They use it to brand themselves and to appear attractive for recruits and customers alike. These differences can be theoretically explained firstly as a generational gap, meaning that younger gang members prefer the use of social media; and secondly, by how well established a gang already is, as newer gangs need more attention to establish themselves
Street Gangs and Coercive Control: The Gendered Exploitation of Young Women and Girls in County Lines
This paper explores young women and girls’ participation in gangs and ‘county lines’ drug sales. Qualitative interviews and focus groups with criminal justice and social service professionals found that women and girls in gangs often are judged according to androcentric, stereotypical norms that deny gender-specific risks of exploitation. Gangs capitalise on the relative ‘invisibility’ of young women to advance their economic interests in county lines and stay below police radar. The research shows gangs maintain control over women and girls in both physical and digital spaces via a combination of threatened and actual (sexual) violence and a form of economic abuse known as debt bondage; tactics readily documented in the field of domestic abuse. This paper argues that coercive control offers a new way of understanding and responding to these gendered experiences of gang life, with important implications for policy and practic
The AdS_5xS^5 superstring worldsheet S-matrix and crossing symmetry
An S-matrix satisying the Yang-Baxter equation with symmetries relevant to
the AdS_5xS^5 superstring has recently been determined up to an unknown scalar
factor. Such scalar factors are typically fixed using crossing relations,
however due to the lack of conventional relativistic invariance, in this case
its determination remained an open problem.
In this paper we propose an algebraic way to implement crossing relations for
the AdS_5xS^5 superstring worldsheet S-matrix. We base our construction on a
Hopf-algebraic formulation of crossing in terms of the antipode and introduce
generalized rapidities living on the universal cover of the parameter space
which is constructed through an auxillary, coupling constant dependent,
elliptic curve. We determine the crossing transformation and write functional
equations for the scalar factor of the S-matrix in the generalized rapidity
plane.Comment: 27 pages, no figures; v2: sign typo fixed in (24), everything else
unchange
Vacuum polarization induced by a uniformly accelerated charge
We consider a point charge fixed in the Rindler coordinates which describe a
uniformly accelerated frame. We determine an integral expression of the induced
charge density due to the vacuum polarization at the first order in the fine
structure constant. In the case where the acceleration is weak, we give
explicitly the induced electrostatic potential.Comment: 13 pages, latex, no figures, to appear in Int. J. Theor. Phys
Partition function of the eight-vertex model with domain wall boundary condition
We derive the recursive relations of the partition function for the
eight-vertex model on an square lattice with domain wall boundary
condition. Solving the recursive relations, we obtain the explicit expression
of the domain wall partition function of the model. In the
trigonometric/rational limit, our results recover the corresponding ones for
the six-vertex model.Comment: Latex file, 20 pages; V2, references adde
Essential singularity in the Renyi entanglement entropy of the one-dimensional XYZ spin-1/2 chain
We study the Renyi entropy of the one-dimensional XYZ spin-1/2 chain in the
entirety of its phase diagram. The model has several quantum critical lines
corresponding to rotated XXZ chains in their paramagnetic phase, and four
tri-critical points where these phases join. Two of these points are described
by a conformal field theory and close to them the entropy scales as the
logarithm of its mass gap. The other two points are not conformal and the
entropy has a peculiar singular behavior in their neighbors, characteristic of
an essential singularity. At these non-conformal points the model undergoes a
discontinuous transition, with a level crossing in the ground state and a
quadratic excitation spectrum. We propose the entropy as an efficient tool to
determine the discontinuous or continuous nature of a phase transition also in
more complicated models.Comment: 5 pages, 2 figure
Particles in a magnetic field and plasma analogies: doubly periodic boundary conditions
The -particle free fermion state for quantum particles in the plane
subject to a perpendicular magnetic field, and with doubly periodic boundary
conditions, is written in a product form. The absolute value of this is used to
formulate an exactly solvable one-component plasma model, and further motivates
the formulation of an exactly solvable two-species Coulomb gas. The large
expansion of the free energy of both these models exhibits the same O(1) term.
On the basis of a relationship to the Gaussian free field, this term is
predicted to be universal for conductive Coulomb systems in doubly periodic
boundary conditions.Comment: 12 page
- …