1,032 research outputs found

    Exact shock solution of a coupled system of delay differential equations: a car-following model

    Full text link
    In this paper, we present exact shock solutions of a coupled system of delay differential equations, which was introduced as a traffic-flow model called {\it the car-following model}. We use the Hirota method, originally developed in order to solve soliton equations. %While, with a periodic boundary condition, this system has % a traveling-wave solution given by elliptic functions. The relevant delay differential equations have been known to allow exact solutions expressed by elliptic functions with a periodic boundary conditions. In the present work, however, shock solutions are obtained with open boundary, representing the stationary propagation of a traffic jam.Comment: 6 pages, 2 figure

    Strongly nonlinear waves in capillary electrophoresis

    Full text link
    In capillary electrophoresis, sample ions migrate along a micro-capillary filled with a background electrolyte under the influence of an applied electric field. If the sample concentration is sufficiently high, the electrical conductivity in the sample zone could differ significantly from the background.Under such conditions, the local migration velocity of sample ions becomes concentration dependent resulting in a nonlinear wave that exhibits shock like features. If the nonlinearity is weak, the sample concentration profile, under certain simplifying assumptions, can be shown to obey Burgers' equation (S. Ghosal and Z. Chen Bull. Math. Biol. 2010, 72(8), pg. 2047) which has an exact analytical solution for arbitrary initial condition.In this paper, we use a numerical method to study the problem in the more general case where the sample concentration is not small in comparison to the concentration of background ions. In the case of low concentrations, the numerical results agree with the weakly nonlinear theory presented earlier, but at high concentrations, the wave evolves in a way that is qualitatively different.Comment: 7 pages, 5 figures, 1 Appendix, 2 videos (supplementary material

    Shock waves in strongly interacting Fermi gas from time-dependent density functional calculations

    Full text link
    Motivated by a recent experiment [Phys. Rev. Lett. 106, 150401 (2011)] we simulate the collision between two clouds of cold Fermi gas at unitarity conditions by using an extended Thomas-Fermi density functional. At variance with the current interpretation of the experiments, where the role of viscosity is emphasized, we find that a quantitative agreement with the experimental observation of the dynamics of the cloud collisions is obtained within our superfluid effective hydrodynamics approach, where density variations during the collision are controlled by a purely dispersive quantum gradient term. We also suggest different initial conditions where dispersive density ripples can be detected with the available experimental spatial resolution.Comment: 5 pages, 4 figures, to be published in Phys. Rev.

    Diamagnetic susceptibility obtained from the six-vertex model and its implications for the high-temperature diamagnetic state of cuprate superconductors

    Full text link
    We study the diamagnetism of the 6-vertex model with the arrows as directed bond currents. To our knowledge, this is the first study of the diamagnetism of this model. A special version of this model, called F model, describes the thermal disordering transition of an orbital antiferromagnet, known as d-density wave (DDW), a proposed state for the pseudogap phase of the high-Tc cuprates. We find that the F model is strongly diamagnetic and the susceptibility may diverge in the high temperature critical phase with power law arrow correlations. These results may explain the surprising recent observation of a diverging low-field diamagnetic susceptibility seen in some optimally doped cuprates within the DDW model of the pseudogap phase.Comment: 4.5 pages, 2 figures, revised version accepted in Phys. Rev. Let

    Self-Similar Blowup Solutions to the 2-Component Camassa-Holm Equations

    Full text link
    In this article, we study the self-similar solutions of the 2-component Camassa-Holm equations% \begin{equation} \left\{ \begin{array} [c]{c}% \rho_{t}+u\rho_{x}+\rho u_{x}=0 m_{t}+2u_{x}m+um_{x}+\sigma\rho\rho_{x}=0 \end{array} \right. \end{equation} with \begin{equation} m=u-\alpha^{2}u_{xx}. \end{equation} By the separation method, we can obtain a class of blowup or global solutions for σ=1\sigma=1 or 1-1. In particular, for the integrable system with σ=1\sigma=1, we have the global solutions:% \begin{equation} \left\{ \begin{array} [c]{c}% \rho(t,x)=\left\{ \begin{array} [c]{c}% \frac{f\left( \eta\right) }{a(3t)^{1/3}},\text{ for }\eta^{2}<\frac {\alpha^{2}}{\xi} 0,\text{ for }\eta^{2}\geq\frac{\alpha^{2}}{\xi}% \end{array} \right. ,u(t,x)=\frac{\overset{\cdot}{a}(3t)}{a(3t)}x \overset{\cdot\cdot}{a}(s)-\frac{\xi}{3a(s)^{1/3}}=0,\text{ }a(0)=a_{0}% >0,\text{ }\overset{\cdot}{a}(0)=a_{1} f(\eta)=\xi\sqrt{-\frac{1}{\xi}\eta^{2}+\left( \frac{\alpha}{\xi}\right) ^{2}}% \end{array} \right. \end{equation} where η=xa(s)1/3\eta=\frac{x}{a(s)^{1/3}} with s=3t;s=3t; ξ>0\xi>0 and α0\alpha\geq0 are arbitrary constants.\newline Our analytical solutions could provide concrete examples for testing the validation and stabilities of numerical methods for the systems.Comment: 5 more figures can be found in the corresponding journal paper (J. Math. Phys. 51, 093524 (2010) ). Key Words: 2-Component Camassa-Holm Equations, Shallow Water System, Analytical Solutions, Blowup, Global, Self-Similar, Separation Method, Construction of Solutions, Moving Boundar

    Example of shock wave in unstaible medium: The focusing nonlinear Schrodinger equation

    Full text link
    Dissipationless shock waves in modulational unstable one-dimensional medium are investigated on the simplest example of integrable focusing nonlinear Schr\''odinger (NS) equation. Our approach is based on the construction of special exact solution of the Whitham-NS system, which ''partially saturates'' the modulational instability.Comment: 4 pages, LaTEX, version 2.09, submitted to Phys. Lett.

    Breakdown of Hydrodynamics in a Simple One-Dimensional Fluid

    Full text link
    We investigate the behavior of a one-dimensional diatomic fluid under a shock wave excitation. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches, e.g., the hydrodynamic profiles relax algebraically toward their equilibrium values. Deviations from local thermodynamic equilibrium are persistent, decaying as a power law of the distance to the shock layer. Non-equipartition is observed infinitely far from the shock wave, and the velocity-distribution moments exhibit multiscaling. These results question the validity of simple hydrodynamic theories to understand collective behavior in 1d fluids.Comment: 4 pages, 5 figure

    The frustrated Brownian motion of nonlocal solitary waves

    Full text link
    We investigate the evolution of solitary waves in a nonlocal medium in the presence of disorder. By using a perturbational approach, we show that an increasing degree of nonlocality may largely hamper the Brownian motion of self-trapped wave-packets. The result is valid for any kind of nonlocality and in the presence of non-paraxial effects. Analytical predictions are compared with numerical simulations based on stochastic partial differential equationComment: 4 pages, 3 figures

    Wave-vortex interaction

    Full text link
    We present an experimental study on the effect of a electromagneticaly generated vortex flow on parametrically amplified waves at the surface of a fluid. The underlying vortex flow, generated by a periodic Lorentz force, creates spatio-temporal fluctuations that interact nonlinearly with the standing surface waves. We characterize the bifurcation diagram and measure the power spectrum density (PSD) of the local surface wave amplitude. We show that the parametric instability threshold increases with increasing intensity of the vortex flow.Comment: 8 pages, 10 figures, submitted to Phys. Rev.

    Optical supercavitation in soft-matter

    Full text link
    We investigate theoretically, numerically and experimentally nonlinear optical waves in an absorbing out-of-equilibrium colloidal material at the gelification transition. At sufficiently high optical intensity, absorption is frustrated and light propagates into the medium. The process is mediated by the formation of a matter-shock wave due to optically induced thermodiffusion, and largely resembles the mechanism of hydrodynamical supercavitation, as it is accompanied by a dynamic phase-transition region between the beam and the absorbing material.Comment: 4 pages, 5 figures, revised version: corrected typos and reference
    corecore