25 research outputs found
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Taxonomy of the order Mononegavirales: update 2016
In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
Environmental-induced acquisition of nuptial plumage expression: a role of denaturation of feather carotenoproteins?
Several avian species show a bright carotenoid-based coloration during spring and following a period of duller coloration during the previous winter, despite carotenoids presumably being fully deposited in feathers during the autumn moult. Carotenoid-based breast feathers of male linnets (Carduelis cannabina) increased in hue (redness), saturation and brightness after exposing them to outdoor conditions from winter to spring. This represents the first experimental evidence showing that carotenoid-based plumage coloration may increase towards a colourful expression due to biotic or abiotic environmental factors acting directly on full-grown feathers when carotenoids may be fully functional. Sunlight ultraviolet (UV) irradiation was hypothesized to denature keratin and other proteins that might protect pigments from degradation by this and other environmental factors, suggesting that sunlight UV irradiation is a major factor in the colour increase from winter to spring. Feather proteins and other binding molecules, if existing in the follicles, may be linked to carotenoids since their deposition into feathers to protect colourful features of associated carotenoids during the non-breeding season when its main signalling function may be relaxed. Progress towards uncovering the significance of concealment and subsequent display of colour expression should consider the potential binding and protecting nature of feather proteins associated with carotenoids
Zwilch, a New Component of the ZW10/ROD Complex Required for Kinetochore Functions
The Zeste-White 10 (ZW10) and Rough Deal (ROD) proteins are part of a complex necessary for accurate chromosome segregation. This complex recruits cytoplasmic dynein to the kinetochore and participates in the spindle checkpoint. We used immunoaffinity chromatography and mass spectroscopy to identify the Drosophila proteins in this complex. We found that the complex contains an additional protein we name Zwilch. Zwilch localizes to kinetochores and kinetochore microtubules in a manner identical to ZW10 and ROD. We have also isolated a zwilch mutant, which exhibits the same mitotic phenotypes associated with zw10 and rod mutations: lagging chromosomes at anaphase and precocious sister chromatid separation upon activation of the spindle checkpoint. Zwilch's role within the context of this complex is evolutionarily conserved. The human Zwilch protein (hZwilch) coimmunoprecipitates with hZW10 and hROD from HeLa cell extracts and localizes to the kinetochores at prometaphase. Finally, we discuss immunoaffinity chromatography results that suggest the existence of a weak interaction between the ZW10/ROD/Zwilch complex and the kinesin-like kinetochore component CENP-meta