2,442 research outputs found

    Theoretical study of the ballistics and heat transfer in spinning solid propellant rocket motors

    Get PDF
    Computerized prediction analyses of radial spin acceleration effects on solid propellant rocket motor ballistics and heat transfe

    Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM

    Get PDF
    A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model

    Self-assembly of the simple cubic lattice with an isotropic potential

    Full text link
    Conventional wisdom presumes that low-coordinated crystal ground states require directional interactions. Using our recently introduced optimization procedure to achieve self-assembly of targeted structures (Phys. Rev. Lett. 95, 228301 (2005), Phys. Rev. E 73, 011406 (2006)), we present an isotropic pair potential V(r)V(r) for a three-dimensional many-particle system whose classical ground state is the low-coordinated simple cubic (SC) lattice. This result is part of an ongoing pursuit by the authors to develop analytical and computational tools to solve statistical-mechanical inverse problems for the purpose of achieving targeted self-assembly. The purpose of these methods is to design interparticle interactions that cause self-assembly of technologically important target structures for applications in photonics, catalysis, separation, sensors and electronics. We also show that standard approximate integral-equation theories of the liquid state that utilize pair correlation function information cannot be used in the reverse mode to predict the correct simple cubic potential. We report in passing optimized isotropic potentials that yield the body-centered cubic and simple hexagonal lattices, which provide other examples of non-close-packed structures that can be assembled using isotropic pair interactions.Comment: 16 pages, 12 figures. Accepted for publication in Physical Review

    Application of CFD Analysis to Design Support and Problem Resolution for ASRM and RSRM

    Get PDF
    The use of Navier-Stokes CFD codes to predict the internal flow field environment in a solid rocket motor is a very important analysis element during the design phase of a motor development program. These computational flow field solutions uncover a variety of potential problems associated with motor performance as well as suggesting solutions to these problems. CFD codes have also proven to be of great benefit in explaining problems associated with operational motors such as in the case of the pressure spike problem with the STS-54B flight motor. This paper presents results from analyses involving both motor design support and problem resolution. The issues discussed include the fluid dynamic/mechanical stress coupling at field joints relative to significant propellant deformations, the prediction of axial and radial pressure gradients in the motor associated with motor performance and propellant mechanical loading, the prediction of transition of the internal flow in the motor associated with erosive burning, the accumulation of slag at the field joints and in the submerged nozzle region, impingement of flow on the nozzle nose, and pressure gradients in the nozzle region of the motor. The analyses presented in this paper have been performed using a two-dimensional axisymmetric model. Fluent/BFC, a three dimensional Navier-Stokes flow field code, has been used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical pressure-velocity coupling algorithm. Wall functions are used to represent the character of the viscous sub-layer flow, and an adjusted k-epsilon turbulence model especially configured for mass injection internal flows, is used to model the growth of turbulence in the motor port. Conclusions discussed in this paper consider flow field effects on the forward, center, and aft propellant grains except for the head end star grain region of the forward propellant segment. The field joints and the submerged nozzle are discussed as well. Conclusions relative to both the design evaluation of the ASRM and the RSRM scenarios explaining the pressure spikes were based on the flow field solutions presented in this paper

    Efficacy and tolerability of adjunctive brivaracetam in patients with prior antiepileptic drug exposure: A post-hoc study.

    Get PDF
    Brivaracetam (BRV), a selective, high-affinity ligand for synaptic vesicle protein 2A, is a new antiepileptic drug (AED) for adjunctive treatment of focal (partial-onset) seizures in adults with epilepsy. This post-hoc analysis was conducted to explore the efficacy of adjunctive BRV in patients with prior levetiracetam (LEV) exposure and whether changes in efficacy were related to the similar mechanism of action of these two drugs. Data were pooled from three Phase III studies (NCT00490035; NCT00464269; NCT01261325) of adults with focal seizures taking 1-2 AEDs who received placebo or BRV 50-200mg/day without titration over a 12-week treatment period. Patients taking concomitant LEV at enrollment were excluded from this analysis. Patients were categorized by their status of prior exposure to LEV, carbamazepine (CBZ), topiramate (TPM), or lamotrigine (LTG), to investigate any consistent trend towards reduced response in AED-exposed subgroups compared to AED-naïve subgroups, regardless of the mechanism of action. Study completion rates, percent reduction from baseline in focal seizure frequency over placebo, ≥50% responder rates, and tolerability were evaluated for each subgroup. A total of 1160 patients were investigated. Study completion rates were similar in the AED-exposed subgroups and AED-naïve subgroups. In subgroups with (531 patients) or without (629 patients) prior LEV exposure, ≥50% responder rates for each dose of BRV compared with placebo were generally higher among the LEV-naïve subgroups than the previously LEV-exposed subgroups. LEV-exposed subgroups receiving BRV doses ≥50mg/day showed greater ≥50% responder rates than those receiving placebo. Similar results were observed for CBZ, TPM, and LTG. Previous treatment failure with commonly prescribed AEDs (LEV, CBZ, TPM, or LTG) is associated with a reduced response to BRV irrespective of the mechanism of action. Hence, this post-hoc analysis indicates that previous treatment failure with LEV does not preclude the use of BRV in patients with epilepsy

    RSRM 10 percent Scale Model Drilled Hole Plate Tests

    Get PDF
    The RSRM 10% Scaled Model under design will make use of drilled hole liners to provide mass addition along the axial length of the model. The model will have two sets of liners in use at a time. The outer most liner is a flow distribution tube, the purpose of which is to help distribute the flow evenly over each model segment. The inner most liner will simulate the propellant burning surface at a burn time of 80 seconds. This liner will replicate as closely as possible the actual geometry of the full scale RSRM at the 80 second burn time. In order to obtain the correct mass flow rate for the burn time selected, it is necessary to determine the porosity of the holes drilled in each liner and the performance of those holes. The pressure drop across the liners directly effects the uniformity of the flow in the axial direction for a given model section. It is desired to have a pressure drop across the liners which is greater than the axial pressure drop in a given section. However, the pressure drop across the liner also has a bearing on the structural soundness of the model. The performance of the model was determined analytically, but there was some uncertainty as to the value of the discharge coefficient used. This uncertainty was the impetus for these drilled hole plate tests. Experimentally obtaining the discharge coefficients for sample plates of the porosity to be used in the model would increase the fidelity of the model design. These tests were developed in order to provide the required information with the least amount of testing time and hardware

    A Coupled CFD/FEM Structural Analysis to Determine Deformed Shapes of the RSRM Inhibitors

    Get PDF
    Recent trends towards an increase in the stiffness of the acrylonitrile butadiene rubber (NBR) insulation material used in the construction of the redesigned solid rocket motor (RSRM) propellant inhibitors prompted questions about possible effects on RSRM performance. The specific objectives of the computational fluid dynamics (CFD) task included: (1) the definition of pressure loads to calculate the deformed shape of stiffer inhibitors, (2) the calculation of higher port velocities over the inhibitors to determine shifts in the vortex shedding or edge tone frequencies, and (3) the quantification of higher slag impingement and collection rates on the inhibitors and in the submerged nose nozzle cavity

    A multi-color fast-switching microfluidic droplet dye laser

    Get PDF
    We describe a multi-color microfluidic dye laser operating in whispering gallery mode based on a train of alternating droplets containing solutions of different dyes; this laser is capable of switching the wavelength of its emission between 580 nm and 680 nm at frequencies up to 3.6 kHz -— the fastest among all dye lasers reported; it has potential applications in on-chip spectroscopy and flow cytometry

    Nanoscale fluid flows in the vicinity of patterned surfaces

    Full text link
    Molecular dynamics simulations of dense and rarefied fluids comprising small chain molecules in chemically patterned nano-channels predict a novel switching from Poiseuille to plug flow along the channel. We also demonstrate behavior akin to the lotus effect for a nanodrop on a chemically patterned substrate. Our results show that one can control and exploit the behavior of fluids at the nanoscale using chemical patterning.Comment: Phys. Rev. Lett. in pres

    SRM Internal Flow Test and Computational Fluid Dynamic Analysis

    Get PDF
    During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing
    • …
    corecore