375 research outputs found

    Asymptotic Giant Branch Variables in the Galaxy and the Local Group

    Full text link
    AGB variables, particularly the large amplitude Mira type, are a vital step on the distance scale ladder. They will prove particularly important in the era of space telescopes and extremely large ground-based telescopes with adaptive optics, which will be optimized for infrared observing. Our current understanding of the distances to these stars is reviewed with particular emphasis on improvements that came from Hipparcos as well as on recent work on Local Group galaxies. In addition to providing the essential calibration for extragalactic distances Gaia may also provide unprecedented insight into the poorly understood mass-loss process itself.Comment: Accepted for publication in Astrophysics and Space Science. From a presentation at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective, Naples May 2011. 8 Pages, 9 Figure

    The effect of dust obscuration in RR Tel on optical and IR long-term photometry and Fe II emission lines

    Get PDF
    Infrared and optical photometric and spectroscopic observations of the symbiotic nova RR Tel are used to study the effects and properties of dust in symbiotic binaries containing a cool Mira component, as well as showing "obscuration events" of increased absorption, which are typical for such Miras. A set of photometric observations of the symbiotic nova RR Tel in different wavelength bands - visual from 1949 to 2002 and near-infrared (JHKL) from 1975 to 2002 - are presented. The variability due to the normal Mira pulsation was removed from the JHKL data, which were then compared with the AAVSO visual light curve. The changes of the Fe II emission line fluxes during the 1996-2000 obscuration episode were studied in the optical spectra taken with the Anglo-Australian telescope. We discuss the three periods during which the Mira component was heavily obscured by dust as observed in the different wavelength bands. A change in the correlations of J with other infrared magnitudes was observed with the colour becoming redder after JD2446000. Generally, J-K was comparable, while K-L was larger than typical values for single Miras. A distance estimate of 2.5 kpc, based on the IR data, is given. A larger flux decrease for the permitted than for the forbidden Fe II lines, during the obscuration episode studied, has been found. There is no evidence for other correlations with line properties, in particular with wavelength, which suggests obscuration due to separate optically thick clouds in the outer layers.Comment: 19 pages, 11 figures, 3 table

    Constraints on z~10 Galaxies from the Deepest HST NICMOS Fields

    Full text link
    We use all available fields with deep NICMOS imaging to search for J dropouts (H<28) at z~10. Our primary data set for this search were the two J+H NICMOS parallel fields taken with the ACS HUDF. The 5 sigma limiting mags were 28.6 in J and 28.5 in H. Several shallower fields were also used: J+H NICMOS frames available over the HDF North, the HDF South NICMOS parallel, and the ACS HUDF. The primary selection criterion was (J-H)>1.8. 11 such sources were found in all search fields using this criterion. 8 of these were clearly ruled out as credible z~10 sources, either as a result of detections (>2 sigma) blueward of J or their colors redward of the break (H-K~1.5). The nature of the 3 remaining sources could not be determined from the data. The number appears consistent with the expected contamination from low-z interlopers. Analysis of the stacked images for the 3 candidates also suggests contamination. Regardless of their true redshifts, the actual number of z~10 sources must be <=3. To assess the significance of these results, two lower redshift samples (a z~3.8 B-dropout and z~6 i-dropout sample) were projected to z~8-12 using a (1+z)^{-1} size scaling. They were added to the image frames, and the selection repeated, giving 15.6 and 4.8 J-dropouts, respectively. This suggests that to the limit of this probe (0.3 L*) there has been evolution from z~3.8 and possibly from z~6. This is consistent with the strong evolution already noted at z~6 and z~7.5 relative to z~3-4. Even assuming that 3 sources from this probe are at z~10, the rest-frame continuum UV (~1500 A) luminosity density at z~10 (integrated down to 0.3 L*) is just 0.19_{-0.09}^{+0.13}x that at z~3.8 (or 0.19_{-0.10}^{+0.15}x including cosmic variance). However, if none of our sources is at z~10, this ratio has a 1 sigma upper limit of 0.07. (abridged)Comment: 13 pages, 3 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    Lithium in the Symbiotic Mira V407 Cyg

    Full text link
    We report an identification of the lithium resonance doublet LiI 6708A in the spectrum of V407 Cyg, a symbiotic Mira with a pulsation period of about 745 days. The resolution of the spectra used was R~18500 and the measured equivalent width of the line is ~0.34A. It is suggested that the lithium enrichment is due to hot bottom burning in the intermediate mass AGB variable, although other possible origins cannot be totally ruled out. In contrast to lithium-rich AGB stars in the Magellanic clouds, ZrO 5551A, 6474A absorption bands were not found in the spectrum of V407Cyg. These are the bands used to classify the S-type stars at low-resolution. Although we identified weak ZrO 5718A, 6412A these are not visible in the low-resolution spectra, and we therefore classify the Mira in V407 Cyg as an M type. This, together with other published work, suggests lithium enrichment can precede the third dredge up of s-process enriched material in galactic AGB stars.Comment: 4 pages, 2 figures, to be published in MNRA

    The Distances of SNR W41 and overlapping HII regions

    Full text link
    New HI images from the VLA Galactic Plane Survey show prominent absorption features associated with the supernovae remnant G23.3-0.3 (SNR W41). We highlight the HI absorption spectra and the 13^{13}CO emission spectra of eight small regions on the face of W41, including four HII regions, three non-thermal emission regions and one unclassified region. The maximum velocity of absorption for W41 is 78±\pm2 km/s and the CO cloud at radial velocity 95±\pm5 km/s is behind W41. Because an extended TeV source, a diffuse X-ray enhancement and a large molecular cloud at radial velocity 77±\pm5 km/s are also projected at the center of W41, these yield the kinematic distance of 3.9 to 4.5 kpc for W41. For HII regions, our analyses reveal that both G23.42-0.21 and G23.07+0.25 are at the far kinematic distances (\sim9.9 kpc and \sim 10.6 kpc respectively) of their recombination-line velocities (103±\pm0.5 km/s and 89.6±\pm2.1 km/s respectively), G23.07-0.37 is at the near kinematic distance (4.4±\pm0.3 kpc) of its recombination-line velocity (82.7±\pm2.0 km/s), and G23.27-0.27 is probably at the near kinematic distance (4.1±\pm0.3 kpc) of its recombination-line velocity (76.1±\pm0.6 km/s).Comment: 11 pages, 3 figs., 2 tables, accepted by A

    Possible Recovery of SN 1961V In Hubble Space Telescope Archival Images

    Get PDF
    SN 1961V in NGC 1058 was originally classified by Fritz Zwicky as a ``Type V'' supernova. However, it has been argued that SN 1961V was not a genuine supernova, but instead the superoutburst of an eta Carinae-like luminous blue variable star. In particular, Filippenko et al. (1995, AJ, 110, 2261) used pre-refurbishment HST WFPC images and the known radio position of SN 1961V to conclude that the star survived the eruption and is likely coincident with a V \~ 25.6 mag, V-I ~ 1.9 mag object. Recently, Stockdale et al. (2001, AJ, 122, 283) recovered the fading SN 1961V at radio wavelengths and argue that its behavior is similar that of some Type II supernovae. We have analyzed post-refurbishment archival HST WFPC2 data and find that the new radio position is still consistent with the Filippenko et al. object, which has not changed in brightness or color, but is also consistent with an adjacent, fainter (I ~ 24.3 mag) and very red (V-I > 1.0 mag) object. We suggest that this fainter object could be the survivor of SN 1961V. Forthcoming HST observations may settle this issue.Comment: 8 pages, 6 figures, to appear in the PASP (2002 July issue

    On the difference between type E and A OH/IR stars

    Full text link
    The observed SEDs of a sample of 60 OH/IR stars are fitted using a radiative transfer model of a dusty envelope. Among the whole sample, 21 stars have reliable phase-lag distances while the others have less accurate distances. L*-P,Mlr-P and Mlr-L* relations have been plotted for these stars. It is found that type E (with emission feature at 10um and type A (with absorption feature at 10um) OH/IR stars have different L*-P and Mlr-L* relations while both of them follow a single Mlr-P relation. The type E stars are proven to be located in the area without large scale dense interstellar medium while the type A stars are located probably in dense interstellar medium. It is argued here that this may indicate the two types of OH/IR stars have different chemical composition or zero age main sequence mass and so evolve in different ways. This conclusion has reinforced the argument by Chen et al.(2001) who reached a similar conclusion from the galactic distribution of about 1000 OH/IR stars with the IRAS low-resolution spectra (LRS).Comment: 6 pages, 9 figures, 2 table

    On the He II Emission In Eta Carinae and the Origin of Its Spectroscopic Events

    Full text link
    We describe and analyze Hubble Space Telescope (HST) observations of transient emission near 4680 {\AA} in Eta Car, reported earlier by Steiner & Damineli (2004). If, as seems probable, this is He II λ\lambda4687, then it is a unique clue to Eta Car's 5.5-year cycle. According to our analysis, several aspects of this feature support a mass-ejection model of the observed spectroscopic events, and not an eclipse model. The He II emission appeared in early 2003, grew to a brief maximum during the 2003.5 spectroscopic event, and then abruptly disappeared. It did not appear in any other HST spectra before or after the event. The peak brightness was larger than previously reported, and is difficult to explain even if one allows for an uncertainty factor of order 3. The stellar wind must provide a temporary larger-than-normal energy supply, and we describe a special form of radiative amplification that may also be needed. These characteristics are consistent with a class of mass-ejection or wind-disturbance scenarios, which have implications for the physical structure and stability of Eta Car.Comment: 47 pages (including all appendices, tabs, & figs), 9 figures, 3 tables; submitted to Astrophysical Journal (2005 March 29), accepted for publication in Ap

    Axial Symmetry and Rotation in the SiO Maser Shell of IK Tauri

    Full text link
    We observed v=1, J=1-0 43-GHz SiO maser emission toward the Mira variable IK Tauri (IK Tau) using the Very Long Baseline Array (VLBA). The images resulting from these observations show that SiO masers form a highly elliptical ring of emission approximately 58 x 32 mas with an axial ratio of 1.8:1. The major axis of this elliptical distribution is oriented at position angle of ~59 deg. The line-of-sight velocity structure of the SiO masers has an apparent axis of symmetry consistent with the elongation axis of the maser distribution. Relative to the assumed stellar velocity of 35 km/s, the blue- and red-shifted masers were found to lie to the northwest and southeast of this symmetry axis respectively. This velocity structure suggests a NW-SE rotation of the SiO maser shell with an equatorial velocity, which we determine to be ~3.6 km/s. Such a NW-SE rotation is in agreement with a circumstellar envelope geometry invoked to explain previous water and OH maser observations. In this geometry, water and OH masers are preferentially created in a region of enhanced density along the NE-SW equator orthogonal to the rotation/polar axis suggested by the SiO maser velocities.Comment: 17 Pages, 4 figures (2 color); accepted for publication in Ap

    Hipparcos period-luminosity relations for Miras and semiregular variables

    Full text link
    We present period-luminosity diagrams for nearby Miras and semiregulars, selecting stars with parallaxes better than 20 per cent and well-determined periods. Using K-band magnitudes, we find two well-defined P-L sequences, one corresponding to the standard Mira P-L relation and the second shifted to shorter periods by a factor of about 1.9. The second sequence only contains semiregular variables, while the Mira sequence contains both Miras and semiregulars. Several semiregular stars show double periods in agreement with both relations. The Whitelock evolutionary track is shown to fit the data, indicating that the semiregulars are Mira progenitors. The transition between the two sequences may correspond to a change in pulsation mode or to a change in the stellar structure. Large amplitude pulsations leading to classical Mira classification occur mainly near the tip of the local AGB luminosity function.Comment: 10 pages with figures, accepted by ApJ Letter
    corecore