34 research outputs found

    Canopy studies on ethylene-insensitive tobacco identify ethylene as a novel element in blue light and plant-plant signaling.

    No full text
    Plants growing at high densities express shade avoidance traits as a response to the presence of neighbours. Enhanced shoot elongation is one of the best researched shade avoidance components and increases light capture in dense stands. We show here that also leaf movements, leading to a more vertical leaf orientation (hyponasty), may be crucial in the early phase of competition. The initiation of shade avoidance responses is classically attributed to the action of phytochrome photoreceptors that sense red:far-red (R:FR) ratios in light reflected by neighbours, but also other signals may be involved. It was recently shown that ethylene-insensitive, transgenic (Tetr) tobacco plants, which are insensitive to the gaseous plant hormone ethylene, have reduced shade avoidance responses to neighbours. Here, we report that this is not related to a reduced response to low R:FR ratio, but that Tetr tobacco plants are unresponsive to a reduced photon fluence rate of blue light, which normally suppresses growth inhibition in wild-type (WT) plants. In addition to these light signals, ethylene levels in the canopy atmosphere increased to concentrations that could induce shade avoidance responses in WT plants. Together, these data show that neighbour detection signals other than the R:FR ratio are more important than previously anticipated and argue for a particularly important role for ethylene in determining plant responses to neighbours

    Arabidopsis FHY3 specifically gates phytochrome signaling to the circadian clock

    Get PDF
    Circadian gating of light signaling limits the timing of maximum responsiveness to light to specific times of day. The fhy3 (for far-red elongated hypocotyl3) mutant of Arabidopsis thaliana is involved in independently gating signaling from a group of photoreceptors to an individual response. fhy3 shows an enhanced response to red light during seedling deetiolation. Analysis of two independent fhy3 alleles links enhanced inhibition of hypocotyl elongation in response to red light with an arrhythmic pattern of hypocotyl elongation. Both alleles also show disrupted rhythmicity of central-clock and clock-output gene expression in constant red light. fhy3 exhibits aberrant phase advances under red light pulses during the subjective day. Release-from-light experiments demonstrate clock disruption in fhy3 during the early part of the subjective day in constant red light, suggesting that FHY3 is important in gating red light signaling for clock resetting. The FHY3 gating function appears crucial in the early part of the day for the maintenance of rhythmicity under these conditions. However, unlike previously described Arabidopsis gating mutants that gate all light signaling, gating of direct red light–induced gene expression in fhy3 is unaffected. FHY3 appears to be a novel gating factor, specifically in gating red light signaling to the clock during daytime
    corecore