5 research outputs found

    LLM-powered Data Augmentation for Enhanced Cross-lingual Performance

    Full text link
    This paper explores the potential of leveraging Large Language Models (LLMs) for data augmentation in multilingual commonsense reasoning datasets where the available training data is extremely limited. To achieve this, we utilise several LLMs, namely Dolly-v2, StableVicuna, ChatGPT, and GPT-4, to augment three datasets: XCOPA, XWinograd, and XStoryCloze. Subsequently, we evaluate the effectiveness of fine-tuning smaller multilingual models, mBERT and XLMR, using the synthesised data. We compare the performance of training with data generated in English and target languages, as well as translated English-generated data, revealing the overall advantages of incorporating data generated by LLMs, e.g. a notable 13.4 accuracy score improvement for the best case. Furthermore, we conduct a human evaluation by asking native speakers to assess the naturalness and logical coherence of the generated examples across different languages. The results of the evaluation indicate that LLMs such as ChatGPT and GPT-4 excel at producing natural and coherent text in most languages, however, they struggle to generate meaningful text in certain languages like Tamil. We also observe that ChatGPT falls short in generating plausible alternatives compared to the original dataset, whereas examples from GPT-4 exhibit competitive logical consistency.Comment: EMNLP 2023 Main Conferenc

    Evaluation of Fake News Detection with Knowledge-Enhanced Language Models

    Full text link
    Recent advances in fake news detection have exploited the success of large-scale pre-trained language models (PLMs). The predominant state-of-the-art approaches are based on fine-tuning PLMs on labelled fake news datasets. However, large-scale PLMs are generally not trained on structured factual data and hence may not possess priors that are grounded in factually accurate knowledge. The use of existing knowledge bases (KBs) with rich human-curated factual information has thus the potential to make fake news detection more effective and robust. In this paper, we investigate the impact of knowledge integration into PLMs for fake news detection. We study several state-of-the-art approaches for knowledge integration, mostly using Wikidata as KB, on two popular fake news datasets - LIAR, a politics-based dataset, and COVID-19, a dataset of messages posted on social media relating to the COVID-19 pandemic. Our experiments show that knowledge-enhanced models can significantly improve fake news detection on LIAR where the KB is relevant and up-to-date. The mixed results on COVID-19 highlight the reliance on stylistic features and the importance of domain specific and current KBs.Comment: To appear in Proceedings of the 16th International AAAI Conference on Web and Social Media (AAAI ICWSM-2022

    Parameter-Efficient Multilingual Summarisation: An Empirical Study

    Full text link
    With the increasing prevalence of Large Language Models, traditional full fine-tuning approaches face growing challenges, especially in memory-intensive tasks. This paper investigates the potential of Parameter-Efficient Fine-Tuning, focusing on Low-Rank Adaptation (LoRA), for complex and under-explored multilingual summarisation tasks. We conduct an extensive study across different data availability scenarios, including full-data, low-data, and cross-lingual transfer, leveraging models of different sizes. Our findings reveal that LoRA lags behind full fine-tuning when trained with full data, however, it excels in low-data scenarios and cross-lingual transfer. Interestingly, as models scale up, the performance gap between LoRA and full fine-tuning diminishes. Additionally, we investigate effective strategies for few-shot cross-lingual transfer, finding that continued LoRA tuning achieves the best performance compared to both full fine-tuning and dynamic composition of language-specific LoRA modules

    M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection

    Full text link
    Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries, but this has also resulted in concerns regarding the potential misuse of such texts in journalism, educational, and academic context. In this work, we aim to develop automatic systems to identify machine-generated text and to detect potential misuse. We first introduce a large-scale benchmark M4, which is multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Using the dataset, we experiment with a number of methods and we show that it is challenging for detectors to generalize well on unseen examples if they are either from different domains or are generated by different large language models. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and there is a lot of room for improvement. We believe that our dataset M4, which covers different generators, domains and languages, will enable future research towards more robust approaches for this pressing societal problem. The M4 dataset is available at https://github.com/mbzuai-nlp/M4.Comment: 11 page

    M4: Multi-generator, Multi-domain, and Multi-lingual Black-Box Machine-Generated Text Detection

    No full text
    Large language models (LLMs) have demonstrated remarkable capability to generate fluent responses to a wide variety of user queries. However, this has also raised concerns about the potential misuse of such texts in journalism, education, and academia. In this study, we strive to create automated systems that can detect machine-generated texts and pinpoint potential misuse. We first introduce a large-scale benchmark M4, which is a multi-generator, multi-domain, and multi-lingual corpus for machine-generated text detection. Through an extensive empirical study of this dataset, we show that it is challenging for detectors to generalize well on instances from unseen domains or LLMs. In such cases, detectors tend to misclassify machine-generated text as human-written. These results show that the problem is far from solved and that there is a lot of room for improvement. We believe that our dataset will enable future research towards more robust approaches to this pressing societal problem. The dataset is available at https://github.com/mbzuai-nlp/M
    corecore