143 research outputs found

    Commentary: Nicotinic acetylcholine receptor α9 and α10 subunits are expressed in the brain of mice

    Get PDF
    Fil: Morley, Barbara J.. Boys Town National Research Hospita; Estados UnidosFil: Whiteaker, Paul. Barrow Neurological Institute; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; Argentin

    Mechanism Of Allosteric Modulation Of The Cys-Loop Receptors

    Get PDF
    The cys-loop receptor family is a major family of neurotransmitter-operated ion channels. They play important roles in fast synaptic transmission, controlling neuronal excitability, and brain function. These receptors are allosteric proteins, in that binding of a neurotransmitter to its binding site remotely controls the channel function. The cys-loop receptors also are subject to allosteric modulation by many pharmaceutical agents and endogenous modulators. By binding to a site of the receptor distinct from the neurotransmitter binding site, allosteric modulators alter the response of the receptors to their agonists. The mechanism of allosteric modulation is traditionally believed to be that allosteric modulators directly change the binding affinity of receptors for their agonists. More recent studies support the notion that these allosteric modulators are very weak agonists or antagonists by themselves. They directly alter channel gating, and thus change the distribution of the receptor across multiple different affinity states, indirectly influencing receptors\u27 sensitivity to agonists. There are two major locations of allosteric modulator binding sites. One is in subunit interfaces of the amino-terminal domain. The other is in the transmembrane domain close to the channel gating machinery. In this review, we also give some examples of well characterized allosteric binding pockets. © 2010 by the authors

    Distinctive Single-Channel Properties Of α4β2-Nicotinic Acetylcholine Receptor Isoforms

    Get PDF
    Central nervous system nicotinic acetylcholine receptors (nAChR) are predominantly of the α4β2 subtype. Two isoforms exist, with high or low agonist sensitivity (HS-(α4β2) 2 β2- and LS-(α4β2) 2 α4-nAChR). Both isoforms exhibit similar macroscopic potency and efficacy values at low acetylcholine (ACh) concentrations, mediated by a common pair of high-affinity α4(+)/(-)β2 subunit binding interfaces. However LS-(α4β2) 2 α4-nAChR also respond to higher concentrations of ACh, acting at a third α4(+)/(-)α4 subunit interface. To probe isoform functional differences further, HS- and LS-α4β2-nAChR were expressed in Xenopus laevis oocytes and single-channel responses were assessed using cell-attached patch-clamp. In the presence of a low ACh concentration, both isoforms produce low-bursting function. HS-(α4β2) 2 β2-nAChR exhibit a single conductance state, whereas LS-(α4β2) 2 α4-nAChR display two distinctive conductance states. A higher ACh concentration did not preferentially recruit either conductance state, but did result in increased LS-(α4β2) 2 α4-nAChR bursting and reduced closed times. Introduction of an α4(+)/(-)α4-interface loss-of-function α4W182A mutation abolished these changes, confirming this site’s role in mediating LS-(α4β2) 2 α4-nAChR responses. Small or large amplitude openings are highly-correlated within individual LS-(α4β2) 2 α4-nAChR bursts, suggesting that they arise from distinct intermediate states, each of which is stabilized by α4(+)/(-)α4 site ACh binding. These findings are consistent with α4(+)/(-)α4 subunit interface occupation resulting in allosteric potentiation of agonist actions at α4(+)/(-)β2 subunit interfaces, rather than independent induction of high conductance channel openings

    Distinctive Roles For α7*- And α9*-Nicotinic Acetylcholine Receptors In Inflammatory And Autoimmune Responses In The Murine Experimental Autoimmune Encephalomyelitis Model Of Multiple Sclerosis

    Get PDF
    Previous studies have demonstrated immunosuppressive and anti-inflammatory effects of nicotine, including in the experimental autoimmune encephalomyelitis (EAE) model in mice of some forms of multiple sclerosis (MS). Other studies using knock-out (KO) mice have implicated nicotinic acetylcholine (ACh) receptors containing α7, α9, or β2 subunits (α7*-, α9*- or β2*-nAChR) in different, disease exacerbating or disease-ameliorating processes. These outcomes are in harmony with gene expression analyses showing nAChR subunit mRNA in many classes of immune system cell types. Consistent with influences on disease status, predictable effects of nAChR subunit (and subtype) KO, or of nicotine exposure, are seen on immune cell numbers and distribution and on cytokine levels or other markers of immunity, inflammation, demyelination, and axonal degradation. Providing support for our hypotheses about distinctive roles for nAChR subtypes in EAE, here we have used direct and adoptive EAE induction and a nAChR subunit gene double knock-out (DKO) strategy. Immune cell expression of nAChR α9 subunits as protein is demonstrated by immunostaining of isolated CD4+, CD8+, CD11b+ and CD11c+ cells from wild-type (WT) mice, but not in cells from nAChR α9 subunit KO animals. Nicotine exposure is protective against directly-induced EAE in WT or α7/α9 DKO animals relative to effects seen in WT/vehicle-treated mice, but, remarkably, EAE is exacerbated in vehicle-treated α7/α9 DKO mice. Brain lesion volume and intracranial inflammatory activity similarly are higher in DKO/vehicle than in WT/vehicletreated animals, although nicotine’s protective effects are seen in each instance. By contrast, in adoptive transfer studies, disease severity is attenuated and disease onset is delayed in recipients of splenocytes from WT animals treated with nicotine rather than with vehicle. Moreover, protection as seen in nicotine-treated WT animals is the same in recipients of splenocytes from nAChR α7/α9 DKO mice irrespective of their exposure to nicotine or vehicle. When combined with previous observations, these findings are consistent with disease exacerbation (or even induction) being mediated at least in part via α9*-nAChR in peripheral immune cells. They also suggest protective roles of central nervous system (CNS) α7*-nAChR. The results suggest that both α7*- and α9*-nAChR are potential targets of therapeutic ligands to modulate inflammation and autoimmunity

    Function Of Human α3β4α5 Nicotinic Acetylcholine Receptors Is Reduced By The β5(D398N) Variant

    Get PDF
    Genome-wide studies have strongly associated a non-synonymous polymorphism (rs16969968) that changes the 398th amino acid in the nAChR α5 subunit from aspartic acid to asparagine (D398N), with greater risk for increased nicotine consumption. We have used a pentameric concatemer approach to express defined and consistent populations of α3β4α5 nAChR in Xenopus oocytes. α5(Asn-398; risk) variant incorporation reduces ACh-evoked function compared with inclusion of the common α5(Asp-398) variant without altering agonist or antagonist potencies. Unlinked α3, β4, and α5 subunits assemble to form a uniform nAChR population with pharmacological properties matching those of concatemeric α3β4* nAChRs. α5 subunit incorporation reduces α3β4* nAChR function after coinjection with unlinked α3 and β4 subunits but increases that of α3β4α5 versus α3β4-only concatemers. α5 subunit incorporation into α3β4* nAChR also alters the relative efficacies of competitive agonists and changes the potency of the non-competitive antagonist mecamylamine. Additional observations indicated that in the absence of α5 subunits, free α3 and β4 subunits form at least two further subtypes. The pharmacological profiles of these free subunit α3β4-only subtypes are dissimilar both to each other and to those of α3β4α5 nAChR. The α5 variant-induced change in α3β4α5 nAChR function may underlie some of the phenotypic changes associated with this polymorphism. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc

    Nicotinic Receptor β2 Determines Nk Cell-Dependent Metastasis In A Murine Model Of Metastatic Lung Cancer

    Get PDF
    Cigarette smoke exposure markedly compromises the ability of the immune system to protect against invading pathogens and tumorigenesis. Nicotine is a psychoactive component of tobacco products that acts as does the natural neurotransmitter, acetylcholine, on nicotinic receptors (nAChRs). Here we demonstrate that natural killer (NK) cells strongly express nAChR β2. Nicotine exposure impairs the ability of NK cells to kill target cells and release cytokines, a process that is largely abrogated by nAChR β2 deficiency. Further, nicotinic suppression of NF-κB-induced transcriptional activity in NK cells is dependent on nAChR β2. This nAChR subtype also plays a large role in the NK cell-mediated control of melanoma lung metastasis, in a murine lung metastasis model exposed to nicotine. Our findings suggest nAChR β2 as a prominent pathway for nicotine induced impairment of NK cell functions which contributes to the occurrence of smoking-related pathologies. © 2013 Hao et al

    Desensitization Of α7 Nicotinic Receptor Is Governed By Coupling Strength Relative To Gate Tightness

    Get PDF
    Binding of a neurotransmitter to its membrane receptor opens an integral ion conducting pore. However, prolonged exposure to the neurotransmitter drives the receptor to a refractory state termed desensitization, which plays an important role in shaping synaptic transmission. Despite intensive research in the past, the structural mechanism of desensitization is still elusive. Using mutagenesis and voltage clamp in an oocyte expression system, we provide several lines of evidence supporting a novel hypothesis that uncoupling between binding and gating machinery is the underlying mechanism for α7 nicotinic receptor (nAChR) desensitization. First, the decrease in gate tightness was highly correlated to the reduced desensitization. Second, nonfunctional mutants in three important coupling loops (loop 2, loop 7, and the M2-M3 linker) could be rescued by a gating mutant. Furthermore, the decrease in coupling strength in these rescued coupling loop mutants reversed the gating effect on desensitization. Finally, coupling between M1 and hinge region of the M2-M3 linker also influenced the receptor desensitization. Thus, the uncoupling between N-terminal domain and transmembrane domain, governed by the balance of coupling strength and gate tightness, underlies the mechanism of desensitization for the α7 nAChR. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc

    Differential α4(+)/(-)β2 Agonist-Binding Site Contributions To α4β2 Nicotinic Acetylcholine Receptor Function Within And Between Isoforms

    Get PDF
    Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)2(β2)3 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(-)β2 agonist- binding sites. The LS isoform also contains a unique α4(+)/(-)α4 site with lower agonist affinity than the α4(+)/(-)β2 sites. However, the relative roles of the conserved α4(+)/(-)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2∗-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (-)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with 125I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(-)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(-)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect

    Evaluation of structurally diverse neuronal nicotinic receptor ligands for selectivity at the α6 subtype

    Get PDF
    Direct comparison of pyridine versus pyrimidine substituents on a small but diverse set of ligands indicates that the pyrimidine substitution has the potential to enhance affinity and/or functional activity at α6 subunit-containing neuronal nicotinic receptors (NNRs) and decrease activation of ganglionic nicotinic receptors, depending on the scaffold. The ramifications of this structure–activity relationship are discussed in the context of the design of small molecules targeting smoking cessation
    • …
    corecore