88 research outputs found

    Checkerboard patterns in the t-J model

    Full text link
    Using the density matrix renormalization group, we study the possibility of real space checkerboard patterns arising as the ground states of the t-J model. We find that checkerboards with a commensurate (pi,pi) background are not low energy states and can only be stabilized with large external potentials. However, we find that striped states with charge density waves along the stripes can form approximate checkerboard patterns. These states can be stabilized with a very weak external field aligning and pinning the CDWs on different stripes.Comment: 4 pages, 5 figure

    Cooper-pair transport through a Hubbard chain sandwiched between two superconductors: Density matrix renormalization group calculations

    Full text link
    We present a numerical approach to study the coherent transport of Cooper pairs through a Hubbard chain, and study the role of the contacts in achieving perfect Andreev reflection. We calculate the pair transport using the Density Matrix Renormalization Group by measuring the response of the system to quantum pair fields with complex phases on the two ends of an open system. This approach gives an effective superfluid weight which is in close agreement with the Bethe Ansatz results for the superfluid weight for closed Hubbard rings.Comment: 5 pages, 6 figure

    Effect of the W-term for a t-U-W Hubbard ladder

    Full text link
    Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing is unclear and models with additional interaction terms have been studied. In one of these, the square of a local hopping kinetic energy H_W was found to favor pairing. However, such a term can be separated into a number of simpler processes and one would like to know which of these terms are responsible for enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard ladder

    Competition Between Stripes and Pairing in a t-t'-J Model

    Full text link
    As the number of legs n of an n-leg, t-J ladder increases, density matrix renormalization group calculations have shown that the doped state tends to be characterized by a static array of domain walls and that pairing correlations are suppressed. Here we present results for a t-t'-J model in which a diagonal, single particle, next-near-neighbor hopping t' is introduced. We find that this can suppress the formation of stripes and, for t' positive, enhance the d_{x^2-y^2}-like pairing correlations. The effect of t' > 0 is to cause the stripes to evaporate into pairs and for t' < 0 to evaporate into quasi-particles. Results for n=4 and 6-leg ladders are discussed.Comment: Four pages, four encapsulated figure

    Probing the pairing symmetry and pair charge stiffness of doped t−Jt-J ladders

    Full text link
    We perform the numerical equivalent of a phase sensitive experiment on doped t−Jt-J ladders. We apply proximity effect fields with different complex phases at both ends of an open system and we study the transport of Cooper pairs. Measuring the response of the system and the induced Josephson current, Density Matrix Renormalization Group calculations show how, depending on the doping fraction, the rung-leg parity of the pair field changes from minus to plus as the density of holes is increased. We also study the pair charge stiffness, and we observe a supression of the superconductivity in the region where static stripes appear. We compare our results with predictions from bosonization and renormalization group analysis.Comment: 4 pages, 5 figure

    Comment on ``Stripes and the t-J Model''

    Full text link
    This is a comment being submitted to Physical Review Letters on a recent letter by Hellberg and Manousakis on stripes in the t-J model.Comment: One reference correcte

    Energetics of Domain Walls in the 2D t-J model

    Full text link
    Using the density matrix renormalization group, we calculate the energy of a domain wall in the 2D t-J model as a function of the linear hole density \rho_\ell, as well as the interaction energy between walls, for J/t=0.35. Based on these results, we conclude that the ground state always has domain walls for dopings 0 < x < 0.3. For x < 0.125, the system has (1,0) domain walls with \rho_\ell ~ 0.5, while for 0.125 < x < 0.17, the system has a possibly phase-separated mixture of walls with \rho_\ell ~ 0.5 and \rho_\ell =1. For x > 0.17, there are only walls with \rho_\ell =1. For \rho_\ell = 1, diagonal (1,1) domain walls have very nearly the same energy as (1,0) domain walls.Comment: Several minor changes. Four pages, four encapsulated figure

    The Superconducting Condensation Energy and an Antiferromagnetic Exchange Based Pairing Mechanism

    Full text link
    For the traditional low T_c superconductors, the superconducting condensation energy is proportional to the change in energy of the ionic lattice between the normal and superconducting state, providing a clear link between pairing and the electron-ion interaction. Here, for the t-J model, we discuss an analogous relationship between the superconducting condensation energy and the change in the exchange energy between the normal and superconducting states. We point out the possibility of measuring this using neutron scattering and note that such a measurement, while certainly difficult, could provide important evidence for an exchange interaction-based pairing mechanism.Comment: Replaced with revised versio

    The Doped Two Chain Hubbard Model

    Full text link
    The properties of the two-chain Hubbard Model doped away from half-filling are investigated. The charge gap is found to vanish, but a finite spin gap exists over a range of interchain hopping strength t⊥t_\perp. In this range, there are modified dx2−y2d_{x^2-y^2}--like pairing correlations whose strength is correlated with the size of the spin gap. It is found that the pair field correlations are enhanced by the onsite Coulomb interaction U.Comment: 10 pages and 5 postscript figures, RevTeX 3.0, UCI-CMTHE-94-0
    • …
    corecore