74,513 research outputs found

    Checkerboard patterns in the t-J model

    Full text link
    Using the density matrix renormalization group, we study the possibility of real space checkerboard patterns arising as the ground states of the t-J model. We find that checkerboards with a commensurate (pi,pi) background are not low energy states and can only be stabilized with large external potentials. However, we find that striped states with charge density waves along the stripes can form approximate checkerboard patterns. These states can be stabilized with a very weak external field aligning and pinning the CDWs on different stripes.Comment: 4 pages, 5 figure

    Competition Between Stripes and Pairing in a t-t'-J Model

    Full text link
    As the number of legs n of an n-leg, t-J ladder increases, density matrix renormalization group calculations have shown that the doped state tends to be characterized by a static array of domain walls and that pairing correlations are suppressed. Here we present results for a t-t'-J model in which a diagonal, single particle, next-near-neighbor hopping t' is introduced. We find that this can suppress the formation of stripes and, for t' positive, enhance the d_{x^2-y^2}-like pairing correlations. The effect of t' > 0 is to cause the stripes to evaporate into pairs and for t' < 0 to evaporate into quasi-particles. Results for n=4 and 6-leg ladders are discussed.Comment: Four pages, four encapsulated figure

    Ground State Phases of the Doped 4-Leg t-J Ladder

    Full text link
    Using density matrix renormalization group techniques, we have studied the ground state of the 4-leg t-J ladder doped near half-filling. Depending upon J/t and the hole doping x, three types of ground state phases are found: (1) a phase containing d_{x^2-y^2} pairs; (2) a striped CDW domain-wall phase, and (3) a phase separated regime. A CDW domain-wall consists of fluctuating hole pairs and this phase has significant d_{x^2-y^2} pair field correlations.Comment: 10 pages, with 6 Postscript figure

    d_{x^2-y^2} Pair Domain Walls

    Full text link
    Using the density matrix renormalization group, we study domain wall structures in the t-J model at a hole doping of x=1/8. We find that the domain walls are composed of d_{x^2-y^2} pairs and that the regions between the domain walls have antiferromagnetic correlations that are pi phase shifted across a domain wall. At x=1/8, the hole filling corresponds to one hole per two domain wall unit cells. When the pairs in a domain wall are pinned by an external field, the d_{x^2-y^2} pairing response is suppressed, but when the pinning is weakened, d_{x^2-y^2} pair-field correlations can develop.Comment: 11 pages, with 3 Postscript figure

    Energetics of Domain Walls in the 2D t-J model

    Full text link
    Using the density matrix renormalization group, we calculate the energy of a domain wall in the 2D t-J model as a function of the linear hole density \rho_\ell, as well as the interaction energy between walls, for J/t=0.35. Based on these results, we conclude that the ground state always has domain walls for dopings 0 < x < 0.3. For x < 0.125, the system has (1,0) domain walls with \rho_\ell ~ 0.5, while for 0.125 < x < 0.17, the system has a possibly phase-separated mixture of walls with \rho_\ell ~ 0.5 and \rho_\ell =1. For x > 0.17, there are only walls with \rho_\ell =1. For \rho_\ell = 1, diagonal (1,1) domain walls have very nearly the same energy as (1,0) domain walls.Comment: Several minor changes. Four pages, four encapsulated figure

    Comment on ``Stripes and the t-J Model''

    Full text link
    This is a comment being submitted to Physical Review Letters on a recent letter by Hellberg and Manousakis on stripes in the t-J model.Comment: One reference correcte

    Effect of the W-term for a t-U-W Hubbard ladder

    Full text link
    Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing is unclear and models with additional interaction terms have been studied. In one of these, the square of a local hopping kinetic energy H_W was found to favor pairing. However, such a term can be separated into a number of simpler processes and one would like to know which of these terms are responsible for enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard ladder
    • …
    corecore