82,734 research outputs found

    Resolving the virial discrepancy in clusters of galaxies with modified Newtonian dynamics

    Full text link
    A sample of 197 X-ray emitting clusters of galaxies is considered in the context of Milgrom's modified Newtonian dynamics (MOND). It is shown that the gas mass, extrapolated via an assumed β\beta model to a fixed radius of 3 Mpc, is correlated with the gas temperature as predicted by MOND (MgT2M_g \propto T^2). The observed temperatures are generally consistent with the inferred mass of hot gas; no substantial quantity of additional unseen matter is required in the context of MOND. However, modified dynamics cannot resolve the strong lensing discrepancy in those clusters where this phenomenon occurs. The prediction is that additional baryonic matter may be detected in the central regions of rich clusters.Comment: Submitted to A&A, 4 pages, 3 figures, A&A macro

    Time delay and integration detectors using charge transfer devices

    Get PDF
    An imaging system comprises a multi-channel matrix array of CCD devices wherein a number of sensor cells (pixels) in each channel are subdivided and operated in discrete intercoupled groups of subarrays with a readout CCD shift register terminating each end of the channels. Clock voltages, applied to the subarrays, selectively cause charge signal flow in each subarray in either direction independent of the other subarrays. By selective application of four phase clock voltages, either one, two or all three of the sections subarray sections cause charge signal flow in one direction, while the remainder cause charge signal flow in the opposite direction. This creates a form of selective electronic exposure control which provides an effective variable time delay and integration of three, six or nine sensor cells or integration stages. The device is constructed on a semiconductor sustrate with a buried channel and is adapted for front surface imaging through transparent doped tin oxide gates

    Difference Methods for Boundary Value Problems in Ordinary Differential Equations

    Get PDF
    A general theory of difference methods for problems of the form Ny ≡ y' - f(t,y) = O, a ≦ t ≦ b, g(y(a),y(b))= 0, is developed. On nonuniform nets, t_0 = a, t_j = t_(j-1) + h_j, 1 ≦ j ≦ J, t_J = b, schemes of the form N_(h)u_j = G_j(u_0,•••,u_J) = 0, 1 ≦ j ≦ J, g(u_0,u_J) = 0 are considered. For linear problems with unique solutions, it is shown that the difference scheme is stable and consistent for the boundary value problem if and only if, upon replacing the boundary conditions by an initial condition, the resulting scheme is stable and consistent for the initial value problem. For isolated solutions of the nonlinear problem, it is shown that the difference scheme has a unique solution converging to the exact solution if (i) the linearized difference equations are stable and consistent for the linearized initial value problem, (ii) the linearized difference operator is Lipschitz continuous, (iii) the nonlinear difference equations are consistent with the nonlinear differential equation. Newton’s method is shown to be valid, with quadratic convergence, for computing the numerical solution

    Room-temperature ballistic transport in narrow graphene strips

    Full text link
    We investigate electron-phonon couplings, scattering rates, and mean free paths in zigzag-edge graphene strips with widths of the order of 10 nm. Our calculations for these graphene nanostrips show both the expected similarity with single-wall carbon nanotubes (SWNTs) and the suppression of the electron-phonon scattering due to a Dirichlet boundary condition that prohibits one major backscattering channel present in SWNTs. Low-energy acoustic phonon scattering is exponentially small at room temperature due to the large phonon wave vector required for backscattering. We find within our model that the electron-phonon mean free path is proportional to the width of the nanostrip and is approximately 70 μ\mum for an 11-nm-wide nanostrip.Comment: 5 pages and 5 figure

    The Consumption of Reference Resources

    Get PDF
    Under the operational restriction of the U(1)-superselection rule, states that contain coherences between eigenstates of particle number constitute a resource. Such resources can be used to facilitate operations upon systems that otherwise cannot be performed. However, the process of doing this consumes reference resources. We show this explicitly for an example of a unitary operation that is forbidden by the U(1)-superselection rule.Comment: 4 pages 6x9 page format, 2 figure

    The RHIC Zero Degree Calorimeter

    Full text link
    High Energy collisions of nuclei usually lead to the emission of evaporation neutrons from both ``beam'' and ``target'' nuclei. At the RHIC heavy ion collider with 100GeV/u beam energy, evaporation neutrons diverge by less than  2~2 milliradians from the beam axis Neutral beam fragments can be detected downstream of RHIC ion collisions (and a large aperture Accelerator dipole magnet) if θ\theta\leq 4 mr but charged fragments in the same angular range are usually too close to the beam trajectory. In this 'zero degree' region produced particles and other secondaries deposit negligible energy when compared with that of beam fragmentation neutrons. The purpose of the RHIC zero degree calorimeters (ZDC's) is to detect neutrons emitted within this cone along both beam directions and measure their total energy (from which we calculate multiplicity). The ZDC coincidence of the 2 beam directions is a minimal bias selection of heavy ion collisions. This makes it useful as an event trigger and a luminosity monitor\cite{baltz} and for this reason we built identical detectors for all 4 RHIC experiments. The neutron multiplicity is also known to be correlated with event geometry \cite{appel} and will be used to measure collision centrality in mutual beam int eractions.Comment: 18 pages, 12 figure

    Observation of Entanglement-Dependent Two-Particle Holonomic Phase

    Get PDF
    Holonomic phases---geometric and topological---have long been an intriguing aspect of physics. They are ubiquitous, ranging from observations in particle physics to applications in fault tolerant quantum computing. However, their exploration in particles sharing genuine quantum correlations lack in observations. Here we experimentally demonstrate the holonomic phase of two entangled-photons evolving locally, which nevertheless gives rise to an entanglement-dependent phase. We observe its transition from geometric to topological as the entanglement between the particles is tuned from zero to maximal, and find this phase to behave more resilient to evolution changes with increasing entanglement. Furthermore, we theoretically show that holonomic phases can directly quantify the amount of quantum correlations between the two particles. Our results open up a new avenue for observations of holonomic phenomena in multi-particle entangled quantum systems.Comment: 8 pages, 6 figure

    Future of V/STOL aircraft systems: A survey of opinions

    Get PDF
    The recent success of the British Harriers in the Falkland Islands conflict vividly underscored the potential of V/STOL aircraft in military operations in a difficult environment. Despite this apparent success of the Harrier, there has been a major decline of V/STOL funding in the research and development budgets of the U.S. government and industry. The recent funding history of V/STOL systems is examined. Responses to a questionnaire which asked the question, Should there be an operational V/STOL aircraft other than the AV-8A and AV-8B in the military aircraft fleet of the U.S.A.? are presented and discussed

    Frustrated Hubbard ladders and superconductivity in κ\kappa-BEDT-TTF organic compounds

    Full text link
    Half-filled two-leg Hubbard ladders have spin-gapped short-range antiferromagnetic correlations while three-leg ladders have power law antoferromagnetic correlations, and both systems have d_{x^2-y^2}-power law pairing correlations when they are doped. Thus these ladders exhibit some of the phenomenology seen in the layered cuprates. Here we report results for half-filled frustrated Hubbard ladders, based upon ladder segments taken from a tight-binding model of kappa-BEDT-TTF. Although these ladders are half-filled, varying the degree of frustration can drive them across an insulator-metal transition. We suggest that the spin, charge and pairing correlations of these frustrated ladders near the insulator-metal transition provide support for the notion that kappa-BEDT-TTF is a strongly correlated superconductor
    corecore