3,069 research outputs found

    Patterning nonisometric origami in nematic elastomer sheets

    Get PDF
    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies

    The Radio Spectrum of TVLM513-46546: Constraints on the Coronal Properties of a Late M Dwarf

    Full text link
    We explore the radio emission from the M9 dwarf, TVLM513-46546, at multiple radio frequencies, determining the flux spectrum of persistent radio emission, as well as constraining the levels of circular polarization. Detections at both 3.6 and 6 cm provide spectral index measurement α\alpha (where Sννα_{\nu} \propto \nu^{\alpha}) of 0.4±0.1-0.4\pm0.1. A detection at 20 cm suggests that the spectral peak is between 1.4 and 5 GHz. The most stringent upper limits on circular polarization are at 3.6 and 6 cm, with V/I<V/I <15%. These characteristics agree well with those of typical parameters for early to mid M dwarfs, confirming that magnetic activity is present at levels comparable with those extrapolated from earlier M dwarfs. We apply analytic models to investigate the coronal properties under simple assumptions of dipole magnetic field geometry and radially varying nonthermal electron density distributions. Requiring the spectrum to be optically thin at frequencies higher than 5 GHz and reproducing the observed 3.6 cm fluxes constrains the magnetic field at the base to be less than about 500 G. There is no statistically significant periodicity in the 3.6 cm light curve, but it is consistent with low-level variability.Comment: 11 pages, 2 figures Accepted for publication in the Astrophysical Journa

    Heuristic Algorithms for the Maximum Colorful Subtree Problem

    Get PDF
    In metabolomics, small molecules are structurally elucidated using tandem mass spectrometry (MS/MS); this computational task can be formulated as the Maximum Colorful Subtree problem, which is NP-hard. Unfortunately, data from a single metabolite requires us to solve hundreds or thousands of instances of this problem - and in a single Liquid Chromatography MS/MS run, hundreds or thousands of metabolites are measured. Here, we comprehensively evaluate the performance of several heuristic algorithms for the problem. Unfortunately, as is often the case in bioinformatics, the structure of the (chemically) true solution is not known to us; therefore we can only evaluate against the optimal solution of an instance. Evaluating the quality of a heuristic based on scores can be misleading: Even a slightly suboptimal solution can be structurally very different from the optimal solution, but it is the structure of a solution and not its score that is relevant for the downstream analysis. To this end, we propose a different evaluation setup: Given a set of candidate instances of which exactly one is known to be correct, the heuristic in question solves each instance to the best of its ability, producing a score for each instance, which is then used to rank the instances. We then evaluate whether the correct instance is ranked highly by the heuristic. We find that one particular heuristic consistently ranks the correct instance in a top position. We also find that the scores of the best heuristic solutions are very close to the optimal score; in contrast, the structure of the solutions can deviate significantly from the optimal structures. Integrating the heuristic allowed us to speed up computations in practice by a factor of 100-fold

    Entanglement-free certification of entangling gates

    Get PDF
    Not all quantum protocols require entanglement to outperform their classical alternatives. The nonclassical correlations that lead to this quantum advantage are conjectured to be captured by quantum discord. Here we demonstrate that discord can be explicitly used as a resource: certifying untrusted entangling gates without generating entanglement at any stage. We implement our protocol in the single-photon regime, and show its success in the presence of high levels of noise and imperfect gate operations. Our technique offers a practical method for benchmarking entangling gates in physical architectures in which only highly-mixed states are available.Comment: 5 pages, 2 figure

    Cenozoic evolution of the eastern Black Sea: a test of depth-dependent stretching models

    Get PDF
    Subsidence analysis of the eastern Black Sea basin suggests that the stratigraphy of this deep, extensional basin can be explained by a predominantly pure-shear stretching history. A strain-rate inversion method that assumes pure-shear extension obtains good fits between observed and predicted stratigraphy. A relatively pure-shear strain distribution is also obtained when a strain-rate inversion algorithm is applied that allows extension to vary with depth without assuming its existence or form. The timing of opening of the eastern Black Sea, which occupied a back-arc position during the closure of the Tethys Ocean, has also been a subject of intense debate; competing theories called for basin opening during the Jurassic, Cretaceous or Paleocene/Eocene. Our work suggests that extension likely continued into the early Cenozoic, in agreement with stratigraphic relationships onshore and with estimates for the timing of arc magmatism. Further basin deepening also appears to have occurred in the last 20 myr. This anomalous subsidence event is focused in the northern part of the basin and reaches its peak at 15–10 Ma. We suggest that this comparatively localized shortening is associated with the northward movement of the Arabian plate. We also explore the effects of paleowater depth and elastic thickness on the results. These parameters are controversial, particularly for deep-water basins and margins, but their estimation is a necessary step in any analysis of the tectonic subsidence record stored in stratigraphy. <br/

    Expression profiling of snoRNAs in normal hematopoiesis and AML

    Get PDF
    Key Points A subset of snoRNAs is expressed in a developmental- and lineage-specific manner during human hematopoiesis. Neither host gene expression nor alternative splicing accounted for the observed differential expression of snoRNAs in a subset of AML.</jats:p

    The Challenge of Wide-Field Transit Surveys: The Case of GSC 01944-02289

    Full text link
    Wide-field searches for transiting extra-solar giant planets face the difficult challenge of separating true transit events from the numerous false positives caused by isolated or blended eclipsing binary systems. We describe here the investigation of GSC 01944-02289, a very promising candidate for a transiting brown dwarf detected by the Transatlantic Exoplanet Survey (TrES) network. The photometry and radial velocity observations suggested that the candidate was an object of substellar mass in orbit around an F star. However, careful analysis of the spectral line shapes revealed a pattern of variations consistent with the presence of another star whose motion produced the asymmetries observed in the spectral lines of the brightest star. Detailed simulations of blend models composed of an eclipsing binary plus a third star diluting the eclipses were compared with the observed light curve and used to derive the properties of the three components. Our photometric and spectroscopic observations are fully consistent with a blend model of a hierarchical triple system composed of an eclipsing binary with G0V and M3V components in orbit around a slightly evolved F5 dwarf. We believe that this investigation will be helpful to other groups pursuing wide-field transit searches as this type of false detection could be more common than true transiting planets, and difficult to identify.Comment: To appear in ApJ, v. 621, 2005 March 1
    corecore