15,001 research outputs found

    Gravity darkening and brightening in binaries

    Full text link
    We apply a von Zeipel gravity darkening model to corotating binaries to obtain a simple, analytical expression for the emergent radiative flux from a tidally distorted primary orbiting a point-mass secondary. We adopt a simple Roche model to determine the envelope structure of the primary, assumed massive and centrally condensed, and use the results to calculate the flux. As for single rotating stars, gravity darkening reduces the flux along the stellar equator of the primary, but, unlike for rotating stars, we find that gravity brightening enhances the flux in a region around the stellar poles. We identify a critical limiting separation beyond which hydrostatic equilibrium no longer is possible, whereby the flux vanishes at the point on the stellar equator of the primary facing the companion. For equal-mass binaries, the total luminosity is reduced by about 13 % when this limiting separation is reached.Comment: 7 pages, 5 figures, matches version published in Astrophysical Journa

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 9: Summary report to phase 3 faculty and student respondents including frequency distributions

    Get PDF
    This project is designed to explore the diffusion of scientific and technical information (STI) throughout the aerospace industry. The increased international competition and cooperation in the industry promises to significantly affect the STI standards of U.S. aerospace engineers and scientists. Therefore, it is important to understand the aerospace knowledge diffusion process itself and its implications at the individual, organizational, national, and international levels. Examined here is the role of STI in the academic aerospace community

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 10: Summary report to phase 3 academic library respondents including frequency distributions

    Get PDF
    Phase 3 of a 4 part study was undertaken to study the use of scientific and technical information (STI) in the academic aerospace community. Phase 3 of this project used three questionnaires that were sent to three groups (i.e., faculty, librarians, and students) in the academic aerospace community. Specific attention was paid to the types of STI used and the methods in which academic users acquire STI. The responses of the academic libraries are focussed on herein. Demographic information on academic aerospace libraries is provided. Data regarding NASA interaction with academic aerospace libraries is also included, as is the survey instrument

    NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    Get PDF
    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases

    [NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 5:] Summary report to phase 1 respondents including frequency distributions

    Get PDF
    Phase 1 of a four part study was undertaken to investigate the use of scientific and technical information (STI) by U.S. aerospace engineers and scientists. Specific attention was paid to institutional and sociometric variables and to the step-by-step process of information gathering used by the respondents. Data were collected by means of three self-administered mail-back questionnaires. The approximately 34,000 members of the American Institute of Aeronautics and Astronautics served as the study population. More than 65 percent of the randomly selected respondants returned the questionnaires in each of the three groups. Respondants relied more heavily on informal sources of information than formal sources and turned to librarians and other technical information specialists only when they did not obtain results via informal means or their own formal searches. The report includes frequency distributions for the questions

    The transition between hole-pairs and four-hole clusters in four-leg tJ ladders

    Full text link
    Holes weakly doped into a four-leg \tj ladder bind in pairs. At dopings exceeding a critical doping of δc1/8\delta_c\simeq {1/8} four hole clusters are observed to form in DMRG calculations. The symmetry of the ground state wavefunction does not change and we are able to reproduce this behavior qualitatively with an effective bosonic model in which the four-leg ladder is represented as two coupled two-leg ladders and hole-pairs are mapped on hard core bosons moving along and between these ladders. At lower dopings, δ<δc\delta<\delta_c, a one dimensional bosonic representation for hole-pairs works and allows us to calculate accurately the Luttinger liquid parameter \krho, which takes the universal value \krho=1 as half-filling is approached
    corecore