2,056 research outputs found

    Pretreatment cognitive and neural differences between sapropterin dihydrochloride responders and non-responders with phenylketonuria

    Get PDF
    Sapropterin dihydrochloride (BH4) reduces phenylalanine (Phe) levels and improves white matter integrity in a subset of individuals with phenylketonuria (PKU) known as “responders.” Although prior research has identified biochemical and genotypic differences between BH4 responders and non-responders, cognitive and neural differences remain largely unexplored. To this end, we compared intelligence and white matter integrity prior to treatment with BH4 in 13 subsequent BH4 responders with PKU, 16 subsequent BH4 non-responders with PKU, and 12 healthy controls. Results indicated poorer intelligence and white matter integrity in non-responders compared to responders prior to treatment. In addition, poorer white matter integrity was associated with greater variability in Phe across the lifetime in non-responders but not in responders. These results underscore the importance of considering PKU as a multi-faceted, multi-dimensional disorder and point to the need for additional research to delineate characteristics that predict response to treatment with BH4

    A Window of Opportunity: Subdominant Predators Can Use Suboptimal Prey

    Get PDF
    Introduced species have been linked to declines of native species through mechanisms including intraguild predation and exploitative competition. However, coexistence among species may be promoted by niche partitioning if native species can use resources that the invasive species cannot. Previous research has shown that some strains of the aphid Aphis craccivora are toxic to a competitively dominant invasive lady beetle, Harmonia axyridis. Our objective was to investigate whether these aphids might be an exploitable resource for other, subdominant, lady beetle species. We compared larval development rate, survival, and adult weight of five lady beetle species in no-choice experiments with two different strains of A. craccivora, one of which is toxic to H. axyridis and one that is nontoxic. Two lady beetle species, Cycloneda munda and Coleomegilla maculata, were able to complete larval development when feeding on the aphid strain that is toxic to H. axyridis, experiencing only slight developmental delays relative to beetles feeding on the other aphid strain. One species, Coccinella septempunctata, also was able to complete larval development, but experienced a slight reduction in adult weight. The other two lady beetle species, Hippodamia convergens and Anatis labiculata, demonstrated generally low survivorship when consuming A. craccivora, regardless of aphid strain. All five species showed increased survival and/or development relative to H. axyridis on the “toxic” aphid strain. Our results suggest that this toxic trait may act as a narrow-spectrum defense for the aphids, providing protection against only some lady beetle enemies. For other less-susceptible lady beetles, these aphids have the potential to provide competitive release from the otherwise dominant H. axyridis

    An anisotropic viscoplasticity model for shale based on layered microstructure homogenization

    Full text link
    Viscoplastic deformation of shale is frequently observed in many subsurface applications. Many studies have suggested that this viscoplastic behavior is anisotropic---specifically, transversely isotropic---and closely linked to the layered composite structure at the microscale. In this work, we develop a two-scale constitutive model for shale in which anisotropic viscoplastic behavior naturally emerges from semi-analytical homogenization of a bi-layer microstructure. The microstructure is modeled as a composite of soft layers, representing a ductile matrix formed by clay and organics, and hard layers, corresponding to a brittle matrix composed of stiff minerals. This layered microstructure renders the macroscopic behavior anisotropic, even when the individual layers are modeled with isotropic constitutive laws. Using a common correlation between clay and organic content and magnitude of creep, we apply a viscoplastic Modified Cam-Clay plasticity model to the soft layers, while treating the hard layers as a linear elastic material to minimize the number of calibration parameters. We then describe the implementation of the proposed model in a standard material update subroutine. The model is validated with laboratory creep data on samples from three gas shale formations. We also demonstrate the computational behavior of the proposed model through simulation of time-dependent borehole closure in a shale formation with different bedding plane directions

    Efficient solvers for hybridized three-field mixed finite element coupled poromechanics

    Full text link
    We consider a mixed hybrid finite element formulation for coupled poromechanics. A stabilization strategy based on a macro-element approach is advanced to eliminate the spurious pressure modes appearing in undrained/incompressible conditions. The efficient solution of the stabilized mixed hybrid block system is addressed by developing a class of block triangular preconditioners based on a Schur-complement approximation strategy. Robustness, computational efficiency and scalability of the proposed approach are theoretically discussed and tested using challenging benchmark problems on massively parallel architectures
    • …
    corecore