290 research outputs found

    Competitive swimmers modify racing start depth upon request

    Get PDF
    To expand upon recent findings showing that competitive swimmers complete significantly shallower racing starts in shallower pools, 12 more experienced and 13 less experienced swimmers were filmed underwater during completion of competitive starts. Two starts (1 routine and 1 “requested shallow”) were executed from a 0.76 m block height into water 3.66 m deep. Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for both start type and swimmer experience. Starts executed by the more experienced swimmers were deeper and faster than those executed by the less experienced swimmers. When asked to dive shallowly, maximum head depth decreased (0.19 m) and head speed increased (0.33 ms-1) regardless of experience. The ability of all swimmers to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to an inherent inability to control the depth of the start

    Block height influences the head depth of competitive racing starts

    Get PDF
    The purpose of this study was to determine whether or not starting block height has an effect on the head depth and head speed of competitive racing starts. Eleven experienced, collegiate swimmers executed competitive racing starts from three different starting heights: 0.21 m (pool deck), 0.46 m (intermediate block), and 0.76 m (standard block). One-way repeated measures ANOVA indicated that starting height had a significant effect on the maximum depth of the center of the head, head speed at maximum head depth, and distance from starting wall at maximum head depth. Racing starts from the standard block and pool deck were significantly deeper, faster, and farther at maximum head depth than starts from the intermediate block. There were no differences between depth, speed, or distance between the standard block and pool deck. We conclude that there is not a positive linear relationship between starting depth and starting height, which means that starts do not necessarily get deeper as the starting height increases

    Racing start safety: head depth and head speed during competitive starts into a water depth of 1.22 m

    Get PDF
    From the perspective of swimmer safety, there have been no quantitative 3-dimensional studies of the underwater phase of racing starts during competition. To do so, 471 starts were filmed during a meet with a starting depth of 1.22 m and block height of 0.76 m. Starts were stratified according to age (8 & U, 9–10, 11–12, 13–14, and 15 & O) and stroke during the first lap (freestyle, breaststroke, and butterfly). Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the wall at maximum head depth. For all three variables, there were significant main effects for age, F(4, 456) = 12.53, p < .001, F(4, 456) = 27.46, p < .001, and F(4, 456) = 54.71, p < .001, respectively, and stroke, F(2, 456) = 16.91, p < .001, F(2, 456) = 8.45, p < .001, and F(2, 456) = 18.15, p < .001, respectively. The older swimmers performed starts that were deeper and faster than the younger swimmers and as a result, the older swimmers may be at a greater risk for injury when performing starts in this pool depth

    Water depth influences the head depth of competitive racing starts

    Get PDF
    Recent research suggests that swimmers perform deeper starts in deeper water (Blitvich, McElroy, Blanksby, Clothier, & Pearson, 2000; Cornett, White, Wright, Willmott, & Stager, 2011). To provide additional information relevant to the depth adjustments swimmers make as a function of water depth and the validity of values reported in prior literature, 11 collegiate swimmers were asked to execute racing starts in three water depths (1.53 m, 2.14 m, and 3.66 m). One-way repeated measures ANOVA revealed that the maximum depth of the center of the head was significantly deeper in 3.66 m as compared to the shallower water depths. No differences due to water depth were detected in head speed at maximum head depth or in the distance from the wall at which maximum head depth occurred. We concluded that swimmers can and do make head depth adjustments as a function of water depth. Earlier research performed in deep water may provide overestimates of maximum head depth following the execution of a racing start in water depth typical of competitive venues

    Start depth modification by adolescent competitive swimmers

    Get PDF
    To expand upon previous studies showing inexperienced high school swimmers can complete significantly shallower racing starts when asked to start “shallow,” 42 age group swimmers (6-14 years old) were filmed underwater during completion of competitive starts. Two starts (one normal and one “requested shallow”) were executed from a 0.76 m block into 1.83 m of water. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for start type and age. The oldest swimmers’ starts were deeper and faster than the youngest swimmers’ starts. When asked to start shallowly, maximum head depth decreased (0.10 m) and head speed increased (0.32 ms-1) regardless of age group. The ability of all age groups to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to age-related deficits in basic motor skills

    Racing start safety: head depth and head speed during competitive swim starts into a water depth of 2.29m

    Get PDF
    The head depths and head speeds of swimmers attained following the execution of racing starts during competition have not been well described. To address this, 211 competitive starts were filmed into a starting depth of 2.29 m with a block height of 0.76 m. Starts were stratified according to age, sex, stroke, and swim meet. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the wall at maximum head depth. Significant main effects existed for age for all three measures: F(1, 106) = 13.33, p < .001, F(1, 106) = 18.60, p < .001 and F(1, 106) = 70.59, p < .001, respectively. There was a significant age by sex interaction, F(1, 106) = 5.36, p = 0.023, for head speed. In conclusion, older swimmers performed starts that were deeper and faster than younger swimmers and nearly all starts exceeded the threshold speeds for injury. As compared to starts previously reported into 1.22 m, starts were deeper, slower, and farther from the starting wall at maximum head depth

    Teaching Competitive Racing Starts: Practices and Opinions of Professional Swim Coaches

    Get PDF
    The purpose of this study was to gain a better understanding of coaches’ perceptions regarding the most important elements of the competitive swim start and the progressions coaches use to teach the skill to novice swimmers. A survey was developed specifically for this project and administered via an email link sent to all registered USA Swimming coaches. The final survey elicited 471 responses. When coaches were asked if a progression was used when teaching starts, 4.6% reported using a written checklist, 89.8 % a mental one, and 5.5% none at all. Of those that used a progression to teach racing starts, 78.3% used a personally designed progression while the remaining 21.7% used information provided by a professional organization. The information obtained from the survey suggests that teaching the racing start is an informal process. The lack of use of an authoritative resource utilized in teaching racing starts to novice swimmers warrants further investigation with regard to the safety of this complex skill

    Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii

    Get PDF
    BACKGROUND: Apicomplexan parasites replicate by varied and unusual processes where the typically eukaryotic expansion of cellular components and chromosome cycle are coordinated with the biosynthesis of parasite-specific structures essential for transmission. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe the global cell cycle transcriptome of the tachyzoite stage of Toxoplasma gondii. In dividing tachyzoites, more than a third of the mRNAs exhibit significant cyclical profiles whose timing correlates with biosynthetic events that unfold during daughter parasite formation. These 2,833 mRNAs have a bimodal organization with peak expression occurring in one of two transcriptional waves that are bounded by the transition into S phase and cell cycle exit following cytokinesis. The G1-subtranscriptome is enriched for genes required for basal biosynthetic and metabolic functions, similar to most eukaryotes, while the S/M-subtranscriptome is characterized by the uniquely apicomplexan requirements of parasite maturation, development of specialized organelles, and egress of infectious daughter cells. Two dozen AP2 transcription factors form a series through the tachyzoite cycle with successive sharp peaks of protein expression in the same timeframes as their mRNA patterns, indicating that the mechanisms responsible for the timing of protein delivery might be mediated by AP2 domains with different promoter recognition specificities. CONCLUSION/SIGNIFICANCE: Underlying each of the major events in apicomplexan cell cycles, and many more subordinate actions, are dynamic changes in parasite gene expression. The mechanisms responsible for cyclical gene expression timing are likely crucial to the efficiency of parasite replication and may provide new avenues for interfering with parasite growth
    corecore