13,601 research outputs found

    The Spatial and Kinematic Distributions of Cluster Galaxies in a LCDM Universe -- Comparison with Observations

    Get PDF
    We combine dissipationless N-body simulations and semi-analytic models of galaxy formation to study the spatial and kinematic distributions of cluster galaxies in a LCDM cosmology. We investigate how the star formation rates, colours and morphologies of galaxies vary as a function of distance from the cluster centre and compare our results with the CNOC1 survey of galaxies from 15 X-ray luminous clusters in the redshift range 0.18 to 0.55. In our model, gas no longer cools onto galaxies after they fall into the cluster and their star formation rates decline on timescales of 1-2 Gyr. Galaxies in cluster cores have lower star formation rates and redder colours than galaxies in the outer regions because they were accreted earlier. Our colour and star formation gradients agree with those those derived from the data. The difference in velocity dispersions between red and blue galaxies observed in the CNOC1 clusters is also well reproduced by the model. We assume that the morphologies of cluster galaxies are determined solely by their merging histories. Morphology gradients in clusters arise naturally, with the fraction of bulge- dominated galaxies highest in cluster cores. We compare these gradients with the CNOC1 data and find excellent agreement for bulge-dominated galaxies. The simulated clusters contain too few galaxies of intermediate bulge-to-disk ratio, suggesting that additional processes may influence the morphological evolution of disk-dominated galaxies in clusters. Although the properties of the cluster galaxies in our model agree extremely well with the data, the same is not true of field galaxies. Both the star formation rates and the colours of bright field galaxies appear to evolve much more strongly from redshift 0.2 to 0.4 in the CNOC1 field sample than in our simulations.Comment: 17 pages, sumitted to MNRAS. Simulation outputs, halo catalogs, merger trees and galaxy catalogs are now available at http://www.mpa-garching.mpg.de/GIF

    The Savannah River Site: Site Description, Land Use and Management History

    Get PDF
    The 78,000-ha Savannah River Site, which is located in the upper Coastal Plain of South Carolina along the Savannah River, was established as a nuclear production facility in 1951 by the Atomic Energy Commission. The site’s physical and vegetative characteristics, land use history, and the impacts of management and operations are described. Aboriginal and early European settlement was primarily along streams, where much of the farming and timber cutting have occurred. Woodland grazing occurred in the uplands and lowlands. Land use intensity increased after the Civil War and peaked in the 1920s. Impacts from production of cotton and corn, naval stores, fuelwood, and timber left only scattered patches of relatively untouched land and, coupled with grazing and less-frequent fire, severely reduced the extent of longleaf pine (Pinus palustrus) ecosystems. After 1951, the USDA Forest Service, under the direction of the Atomic Energy Commission, initiated a large-scale reforestation effort and continued to manage the site’s forests. Over the last decade, forest management efforts have shifted to recovering the Red-cockaded Woodpecker (Picoides borealis) and restoring longleaf pine habitat. A research set-aside program was established in the 1950s and is now administered by the Savannah River Ecology Laboratory. Impacts from thermal effluents, fly-ash runoff, construction of radioactive waste facilities, and release of low-level radionuclides and certain metals have been assessed by the Savannah River Ecology Laboratory and other researchers

    The Boundary Cosmological Constant in Stable 2D Quantum Gravity

    Full text link
    We study further the r\^ole of the boundary operator \O_B for macroscopic loop length in the stable definition of 2D quantum gravity provided by the [P~,Q]=Q[{\tilde P},Q]=Q formulation. The KdV flows are supplemented by an additional flow with respect to the boundary cosmological constant σ\sigma. We numerically study these flows for the m=1m=1, 22 and 33 models, solving for the string susceptibility in the presence of \O_B for arbitrary coupling σ\sigma. The spectrum of the Hamiltonian of the loop quantum mechanics is continuous and bounded from below by σ\sigma. For large positive σ\sigma, the theory is dominated by the `universal' m=0m=0 topological phase present only in the [P~,Q]=Q[{\tilde P},Q]=Q formulation. For large negative σ\sigma, the non--perturbative physics approaches that of the [P,Q]=1[P,Q]=1 definition, although there is no path to the unstable solutions of the [P,Q]=1[P,Q]=1 mm-even models.Comment: (Plain Tex, 11pp, 4 figures available on request) SHEP 91/92-2

    The FIRST-2MASS Red Quasar Survey

    Get PDF
    Combining radio observations with optical and infrared color selection -- demonstrated in our pilot study to be an efficient selection algorithm for finding red quasars -- we have obtained optical and infrared spectroscopy for 120 objects in a complete sample of 156 candidates from a sky area of 2716 square degrees. Consistent with our initial results, we find our selection criteria -- J-K>1.7, R-K>4.0 -- yield a ~50% success rate for discovering quasars substantially redder than those found in optical surveys. Comparison with UVX- and optical color-selected samples shows that >~ 10% of the quasars are missed in a magnitude-limited survey. Simultaneous two-frequency radio observations for part of the sample indicate that a synchrotron continuum component is ruled out as a significant contributor to reddening the quasars' spectra. We go on to estimate extinctions for our objects assuming their red colors are caused by dust. Continuum fits and Balmer decrements suggest E(B-V) values ranging from near zero to 2.5 magnitudes. Correcting the K-band magnitudes for these extinctions, we find that for K <= 14.0, red quasars make up between 25% and 60% of the underlying quasar population; owing to the incompleteness of the 2MASS survey at fainter K-band magnitudes, we can only set a lower limit to the radio-detected red quasar population of >20-30%.Comment: 80 pages (single-column, preprint format) 20 figures, Accepted for publicated in Ap
    • …
    corecore