15,648 research outputs found

    Multidimensional Simulations of Rotating Pair Instability Supernovae

    Get PDF
    We study the effects of rotation on the dynamics, energetics and Ni-56 production of Pair Instability Supernova explosions by performing rotating two-dimensional ("2.5-D") hydrodynamics simulations. We calculate the evolution of eight low metallicity (Z = 10^-3, 10^-4 Zsun) massive (135-245 Msun) PISN progenitors with initial surface rotational velocities 50% that of the critical Keplerian value using the stellar evolution code MESA. We allow for both the inclusion and the omission of the effects of magnetic fields in the angular momentum transport and in chemical mixing, resulting in slowly-rotating and rapidly-rotating final carbon-oxygen cores, respectively. Increased rotation for carbon-oxygen cores of the same mass and chemical stratification leads to less energetic PISN explosions that produce smaller amounts of Ni-56 due to the effect of the angular momentum barrier that develops and slows the dynamical collapse. We find a non-monotonic dependence of Ni-56 production on rotational velocity in situations when smoother composition gradients form at the outer edge of the rotating cores. In these cases, the PISN energetics are determined by the competition of two factors: the extent of chemical mixing in the outer layers of the core due to the effects of rotation in the progenitor evolution and the development of angular momentum support against collapse. Our 2.5-D PISN simulations with rotation are the first presented in the literature. They reveal hydrodynamic instabilities in several regions of the exploding star and increased explosion asymmetries with higher core rotational velocity.Comment: 31 pages, 23 figures, accepted for publication in the Ap

    Time Dependent Pairing Equations for Seniority One Nuclear Systems

    Full text link
    When the time dependent Hartree-Fock-Bogoliubov intrinsic equations of motion are solved in the case of seniority one nuclear systems, the unpaired nucleon remains on the same orbital. The blocking effect hinders the possibility to skip from one orbital to another. This unpleasant feature is by-passed with a new set of pairing time dependent equations that allows the possibility that the unpaired nucleon changes its single-particle level. These equations generalize the time dependent Hartree-Fock-Bogoliubov equations of motion by including the Landau-Zener effect. The derivation of these new equations is presented in details. These equations are applied in the case of a superasymmetric fission process, that is, in order to explain the fine structure the 14C emission from 233Ra. A new version of the Woods-Saxon model extended for two-center potentials is used in this context.Comment: 12 pages, 6 figure

    Yang-Mills gravity in biconformal space

    Get PDF
    We write a gravity theory with Yang-Mills type action using the biconformal gauging of the conformal group. We show that the resulting biconformal Yang-Mills gravity theories describe 4-dim, scale-invariant general relativity in the case of slowly changing fields. In addition, we systematically extend arbitrary 4-dim Yang-Mills theories to biconformal space, providing a new arena for studying flat space Yang-Mills theories. By applying the biconformal extension to a 4-dim pure Yang-Mills theory with conformal symmetry, we establish a 1-1, onto mapping between a set of gravitational gauge theories and 4-dim, flat space gauge theories.Comment: 27 pages; paper emphasis shifted to focus on gravity; references adde

    PROCESSES FOR PRODUCING DOXORUBICIN, DAUNOMYCINONE, AND DERIVATIVES OF DOXORUBICIN

    Get PDF
    To produce doxorubicin and its analogues methyl 3alpha, 5alpha-dihydroxy-5beta-(trimethylsilylethynyl)- 2alpha-nitromethylcyclohexane-1beta-carboxylate acetonide is condensed with 1,4-dihydro-4,4,5-trimethoxy-1-oxonaphthalene in the presence of 1,8-diazabicyclo-5.4.0]undec-7-ene in an aprotic solvent to produce 3-(2beta-carbomethoxy-4-beta-ethynyl-4-alpha, 6alpha-(di-O-isopropylidenyl)cyclohexanyl-1-yl)-nitromethyl-4,4,5-trimethoxy-1-oxo-1,2,3,4-tetrahydronaphthalene; which is cyclized to produce 9beta ethynyl-12-hydroxy-7alpha, 9alpha-(di-O-iso propylidenyl)-6-nitro-4,5,5-trimethoxy-5,5a,6- 6a,7,8,9,10,10a,11-decahydro -11-naphthacenone. The decahydro-11-naphthacenone is converted to 7alpha 9alpha,(di-O-isopropyl-idenyl)-4,5-dimethoxy-9beta ethynyl-12-hydroxy-6-nitro-6,6a,7,8,9,10,10a, 11 octahydro-11, -naphthacenone. The octahydro-11 naphthacenone is oxidized to 7alpha-9alpha, (di-O-iso propyl-idenyl)-9beta-ethynyl-11-hydroxy-4-methoxy-6- nitro-7,8,9,10-tetrahydro-5,12-naphthacenedione which is converted to 6-desoxy-6-nitrodaunomycinone, daunomycinone and related 6-substituted analogues of daunomycinone

    The view from elsewhere: perspectives on ALife Modeling

    Get PDF
    Many artificial life researchers stress the interdisciplinary character of the field. Against such a backdrop, this report reviews and discusses artificial life, as it is depicted in, and as it interfaces with, adjacent disciplines (in particular, philosophy, biology, and linguistics), and in the light of a specific historical example of interdisciplinary research (namely cybernetics) with which artificial life shares many features. This report grew out of a workshop held at the Sixth European Conference on Artificial Life in Prague and features individual contributions from the workshop's eight speakers, plus a section designed to reflect the debates that took place during the workshop's discussion sessions. The major theme that emerged during these sessions was the identity and status of artificial life as a scientific endeavor

    The existence of time

    Full text link
    Of those gauge theories of gravity known to be equivalent to general relativity, only the biconformal gauging introduces new structures - the quotient of the conformal group of any pseudo-Euclidean space by its Weyl subgroup always has natural symplectic and metric structures. Using this metric and symplectic form, we show that there exist canonically conjugate, orthogonal, metric submanifolds if and only if the original gauged space is Euclidean or signature 0. In the Euclidean cases, the resultant configuration space must be Lorentzian. Therefore, in this context, time may be viewed as a derived property of general relativity.Comment: 21 pages (Reduced to clarify and focus on central argument; some calculations condensed; typos corrected
    • …
    corecore