17,203 research outputs found

    Carbon dioxide and water exchange rates by a wheat crop in NASA's biomass production chamber: Results from an 86-day study (January to April 1989)

    Get PDF
    Gas exchange measurements were taken for a 20 sq m wheat stand grown from seed to harvest in NASA's Biomass Production Chamber. Respiration of the wheat stand caused the CO2 concentrations to rise an average of 440 ppm during the 4-h dark period each day, or 7.2 umol/sq m/sec. Dark period respiration was sensitive to temperature changes and could be increased 70 to 75 percent by raising the temperature from 16 C to 24 C. Stand photosynthesis (measured from the rate of CO2 drawdown immediately after the lights came on each day) peaked at 27 umol/sq m/sec at 25 days after planting and averaged 15 umol/sq m/sec throughout the study. By combining the average light period photosynthesis and average dark period respiration, a net of 860 g or 470 liters of CO2 were fixed per day. Stand photosynthetic rates showed a linear increase with increasing irradiance (750 umol/sq m/sec PPF the highest level tested), with an average light compensation point after day 30 of 190 umol/sq m/sec. Stand photosynthesis decreased slightly when CO2 levels were decreased from 2200 to 800 ppm, but dropped sharply when CO2 was decreased below 700 to 800 ppm. Water production from stand transpiration peaked at 120 L/day near 25 days and averaged about 90 L/day, or 4.5 L/sq m/day throughout the study

    Multidimensional Simulations of Rotating Pair Instability Supernovae

    Get PDF
    We study the effects of rotation on the dynamics, energetics and Ni-56 production of Pair Instability Supernova explosions by performing rotating two-dimensional ("2.5-D") hydrodynamics simulations. We calculate the evolution of eight low metallicity (Z = 10^-3, 10^-4 Zsun) massive (135-245 Msun) PISN progenitors with initial surface rotational velocities 50% that of the critical Keplerian value using the stellar evolution code MESA. We allow for both the inclusion and the omission of the effects of magnetic fields in the angular momentum transport and in chemical mixing, resulting in slowly-rotating and rapidly-rotating final carbon-oxygen cores, respectively. Increased rotation for carbon-oxygen cores of the same mass and chemical stratification leads to less energetic PISN explosions that produce smaller amounts of Ni-56 due to the effect of the angular momentum barrier that develops and slows the dynamical collapse. We find a non-monotonic dependence of Ni-56 production on rotational velocity in situations when smoother composition gradients form at the outer edge of the rotating cores. In these cases, the PISN energetics are determined by the competition of two factors: the extent of chemical mixing in the outer layers of the core due to the effects of rotation in the progenitor evolution and the development of angular momentum support against collapse. Our 2.5-D PISN simulations with rotation are the first presented in the literature. They reveal hydrodynamic instabilities in several regions of the exploding star and increased explosion asymmetries with higher core rotational velocity.Comment: 31 pages, 23 figures, accepted for publication in the Ap

    Proximate Composition of Seed and Biomass from Soybean Plants Grown at Different Carbon Dioxide (CO2) Concentrations

    Get PDF
    Soybean plants were grown for 90 days at 500, 1000, 2000, and 5000 ubar (ppm) carbon dioxide (CO2) and compared for proximate nutritional value. For both cultivars (MC and PX), seed protein levels were highest at 1000 (39.3 and 41.9 percent for MC and PX) and lowest at 2000 (34.7 and 38.9 percent for MC and PX). Seed fat (oil) levels were highest at 2000 (21.2 and 20.9 percent for MC and PX) and lowest at 5000 (13.6 and 16.6 percent for MC and PX). Seed carbohydrate levels were highest at 500 (31.5 and 28.4 percent for MC and PX) and lowest at 2000 (20.9 and 20.8 percent for MC and PX). When adjusted for total seed yield per unit growing area, the highest production of protein and carbohydrate occurred with MC at 1000, while equally high amounts of fat were produced with MC at 1000 and 2000. Seed set and pod development at 2000 were delayed in comparison to other CO2 treatments; thus the proportionately high fat and low protein at 2000 may have been a result of the delay in plant maturity rather than CO2 concentration. Stem crude fiber and carbohydrate levels for both cultivars increased with increased CO2. Leaf protein and crude fiber levels also tended to rise with increased CO2 but leaf carbohydrate levels decreased as CO2 was increased. The results suggest that CO2 effects on total seed yield out-weighed any potential advantages to changes in seed composition

    Modelling temperature-dependent larval development and\ud subsequent demographic Allee effects in adult populations of the alpine butterfly Parnassius smintheus

    Get PDF
    Climate change has been attributed as a driver of changes to ecological systems worldwide and understanding the effects of climate change at individual, population, community, and ecosystem levels has become a primary concern of ecology. One avenue toward understanding the impacts of climate change on an ecosystem is through the study of environmentally sensitive species. Butterflies are sensitive to climatic changes due to their reliance on environmental cues such as temperature and photoperiod, which regulate the completion of life history stages. As such, the population dynamics of butterflies may offer insight into the impacts of climate change on the health of an ecosystem. In this paper we study the effects of rearing temperature on the alpine butterfly Parnassius smintheus (Rocky Mountain Apollo), both directly through individual phenological changes and indirectly through adult reproductive success at the population level. Our approach is to formulate a mathematical model of individual development parameterized by experimental data and link larval development to adult reproductive success. A Bernoulli process model describes temperature-dependent larval phenology, and a system of ordinary differential equations is used to study impacts on reproductive success. The phenological model takes field temperature data as its input and predicts a temporal distribution of adult emergence, which in turn controls the dynamics of the reproductive success model. We find that warmer spring and summer temperatures increase reproductive success, while cooler temperatures exacerbate a demographic Allee effect, suggesting that observed yearly fluctuations in P. smintheus population size may be driven by inter-annual temperature variability. Model predictions are validated against mark-recapture field data from 2001 and 2003 − 2009

    Effects of atmospheric CO2 on photosynthetic characteristics of soybean leaves

    Get PDF
    Soybean (Glycine max. cv. McCall) plants were grown at 500, 1000, and 2000 umol mol (exp -1) CO2 for 35 days with a photosynthetic photon flux of 300 umol m (exp -2) s (-1). Individual leaves were exposed to step changes of photosynthetic photon flux to study CO2 assimilation rates (CAR), i.e., leaf net photosynthesis. In general, CAR increased when CO2 increased from 500 to 1000 umol mol (exp -1), but not from 1000 to 2000 umol mol (exp -1). Regardless of the CO2 level, all leaves showed similar CAR at similar CO2 and PPF. This observation contrasts with reports that plants tend to become 'lazy' at elevated CO2 levels over time. Although leaf stomatal conductance (to water vapor) showed diurnal rhythms entrained to the photoperiod, leaf CAR did not show these rhythms and remained constant across the light period, indicating that stomatal conductance had little effect on CAR. Such measurements suggest that short-term changes in CO2 exchange dynamics for a controlled ecological life support system can be closely predicted for an actively growing soybean crop

    Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    Get PDF
    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area

    Atmospheric leakage and condensate production in NASA's biomass production chamber. Effect of diurnal temperature cycles

    Get PDF
    A series of tests were conducted to monitor atmospheric leakage rate and condensate production in NASA's Biomass Production Chamber (BPC). Water was circulated through the 64 plant culture trays inside the chamber during the tests but no plants were present. Environmental conditions were set to a 12-hr photoperiod with either a matching 26 C (light)/20 C (dark) thermoperiod, or a constant 23 C temperature. Leakage, as determined by carbon dioxide decay rates, averaged about 9.8 percent for the 26 C/20 C regime and 7.3 percent for the constant 23 C regime. Increasing the temperature from 20 C to 26 C caused a temporary increase in pressure (up to 0.5 kPa) relative to ambient, while decreasing the temperature caused a temporary decrease in pressure of similar magnitude. Little pressure change was observed during transition between 23 C (light) and 23 C (dark). The lack of large pressure events under isothermal conditions may explain the lower leakage rate observed. When only the plant support inserts were placed in the culture trays, condensate production averaged about 37 liters per day. Placing acrylic germination covers over the tops of culture trays reduced condensate production to about 7 liters per day. During both tests, condensate production from the lower air handling system was 60 to 70 percent greater than from the upper system, suggesting imbalances exist in chilled and hot water flows for the two air handling systems. Results indicate that atmospheric leakage rates are sufficiently low to measure CO2 exchange rates by plants and the accumulation of certain volatile contaminants (e.g., ethylene). Control system changes are recommended in order to balance operational differences (e.g., humidity and temperature) between the two halves of the chamber
    • …
    corecore