13 research outputs found

    Extending motifs in lithiocuprate chemistry: unexpected structural diversity in thiocyanate complexes.

    Get PDF
    The new area of lithio(thiocyanato)cuprates has been developed. Using inexpensive, stable and safe CuSCN for their preparation, these complexes revealed Lipshutz-type dimeric motifs with solvent-dependent point group identities; planar, boat-shaped and chair shaped conformers are seen in the solid state. In solution, both Lipshutz-type and Gilman structures are clearly seen. Since the advent in 2007 of directed ortho cupration, effort has gone into understanding the structure-reactivity effects of amide ligand variation in and alkali metal salt abstraction from Lipshutz-type cuprates such as (TMP)2Cu(CN)Li2(THF) 1 (TMP = 2,2,6,6-tetramethylpiperidide). The replacement of CN(-) with SCN(-) is investigated presently as a means of improving the safety of lithium cuprates. The synthesis and solid state structural characterization of reference cuprate (TMP)2Cu(CN)Li2(THP) 8 (THP = tetrahydropyran) precedes that of the thiocyanate series (TMP)2Cu(SCN)Li2(L) (L = OEt29, THF 10, THP 11). For each of 9-11, preformed TMPLi was combined with CuSCN (2 : 1) in the presence of sub-stoichiometric Lewis base (0.5 eq. wrt Li). The avoidance of Lewis basic solvents incurs formation of the unsolvated Gilman cuprate (TMP)2CuLi 12, whilst multidimensional NMR spectroscopy has evidenced the abstraction of LiSCN from 9-11 in hydrocarbon solution and the in situ formation of Gilman reagents. The synthetic utility of 10 is established in the selective deprotometalation of chloropyridine substrates, including effecting transition metal-free homocoupling in 51-69% yield.This work was supported by the U.K. EPSRC through grant EP/J500380/1 (A. P.) and the Ministère de l'Enseignement Supérieur et de la Recherche scientifique Algérien (M. H.). F. M.This is the final version of the article. It was first available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5DT03882

    Multicomponent signal unmixing from nanoheterostructures: overcoming the traditional challenges of nanoscale X-ray analysis via machine learning.

    Get PDF
    The chemical composition of core-shell nanoparticle clusters have been determined through principal component analysis (PCA) and independent component analysis (ICA) of an energy-dispersive X-ray (EDX) spectrum image (SI) acquired in a scanning transmission electron microscope (STEM). The method blindly decomposes the SI into three components, which are found to accurately represent the isolated and unmixed X-ray signals originating from the supporting carbon film, the shell, and the bimetallic core. The composition of the latter is verified by and is in excellent agreement with the separate quantification of bare bimetallic seed nanoparticles.D.R. acknowledges support from the Royal Society’s Newton International Fellowship scheme. B.R.K. thanks the U.K. EPSRC for financial support (EP/J500380/1). F.d.l.P. and C.D. acknowledge funding from the ERC under grant no. 259619 PHOTO EM. P.A.M and P.B. acknowledges financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/ 2007-2013)/ERC grant agreement 291522-3DIMAGE. P.A.M. also acknowledges financial support from the European Union’s Seventh Framework Programme of the European Commission: ESTEEM2, contract number 312483.This is the final published version. It first appeared at http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b00449

    Lipshutz-type bis(amido)argentates for directed ortho argentation.

    No full text
    Bis(amido)argentate (TMP)2Ag(CN)Li2 (3, TMP-Ag-ate; TMP = 2,2,6,6-tetramethylpiperidido) was designed as a tool for chemoselective aromatic functionalization via unprecedented directed ortho argentation (DoAg). X-Ray crystallographic analysis showed that 3 takes a structure analogous to that of the corresponding Lipshutz cuprate. DoAg with this TMP-Ag-ate afforded multifunctional aromatics in high yields in processes that exhibited high chemoselectivity and compatibility with a wide range of functional groups. These included organometallics- and transition metal-susceptible substituents such as methyl ester, aldehyde, vinyl, iodo, (trifluoromethanesulfonyl)oxy and nitro groups. The arylargentates displayed good reactivity with various electrophiles. Chalcogen (S, Se, and Te) installation and azo coupling reactions also proceeded efficiently

    A reusable catalyst based on CuO hexapods and a CuO-Ag composite for the highly efficient reduction of nitrophenols.

    No full text
    The enormous and urgent need to explore cost-effective catalysts with high efficiency has always been at the forefront of environmental protection and remediation research. This work develops a novel strategy for the fabrication of reusable CuO-based non-noble metal nanomaterials as high-efficiency catalysts. We report a facile and eco-friendly synthesis of CuO hexapods and CuO-Ag composite using uric acid as a reductant and protectant. Both exhibited high catalytic activity in the hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride (NaBH4), with the CuO-Ag composite showing superior catalytic performance. Notably, the highest turnover frequency of CuO-Ag reached 7.97 × 10-2 s-1, which was much higher than numerous noble-metal nanomaterials. In addition, CuO hexapods and CuO-Ag composite were also shown to act as highly efficient and recyclable catalysts in the degeneration of 4-NP. Both CuO hexapods and the CuO-Ag composite exhibited outstanding catalytic durability, with no significant loss of activity over more than 10 cycles in the hydrogenation of 4-NP

    New avenues in the directed deprotometallation of aromatics: recent advances in directed cupration.

    No full text
    Recent advances in the selective deprotometallation of aromatic reagents using alkali metal cuprates are reported. The ability of these synergic bases to effect deprotonation under the influence of a directing group is explored in the context of achieving new and more efficient organic transformations whilst encouraging greater ancillary group tolerance by the base. Developments in our understanding of the structural chemistry of alkali metal cuprates are reported, with both Gilman cuprates of the type R2CuLi and Lipshutz and related cuprates of the type R2Cu(X)Li2 (X = inorganic anion) elucidated and rationalised in terms of ligand sterics. The generation of new types of cuprate motif are introduced through the development of adducts between different classes of cuprate. The use of DFT methods to interrogate the mechanistic pathways towards deprotonative metallation is described. Theoretical modelling of in situ rearrangements undergone by the cuprate base are discussed, with a view to understanding the relationship between R2CuLi and R2Cu(X)Li2, their interconversion and the implications of this for cuprate reactivity. The advent of a new class of adduct between different cuprate types is developed and interpreted in terms of the options for expelling LiX from R2Cu(X)Li2. Applications in the field of medicinal chemistry and (hetero)arene derivatization are explored.Much of this work was supported by the U.K. EPSRC (EP/J500380/1). A.W. would like to acknowledge the graduate students who have contributed to the work in the past (Drs. James Morey and Joanna Haywood) and also the GB Sasakawa and Daiwa Foundations and the Royal Society for support with travel and international collaboration. A.W. and M.U. thank the Japan Society for the Promotion of Science. M.U. acknowledges the personnel who have contributed to the work (Yuichi Hashimoto, Yotaro Matsumoto and Keiichi Hirano, Drs. Shinsuke Komagawa, Shinya Usui and Ching-Yuan Liu, and Professors Shuji Yasuike and Jyoji Kurita). M.U. also thanks Hoansha and KAKENHI (Young Scientist (A), Houga, and Priority Area No. 452 and 459), the Daiichi-Sankyo, Asahi Glass, Mitsubishi, Uehara Memorial, Takeda Science, Sumimoto and NAGASE Science and Technology Foundations. F.C. and F.M. would like to acknowledge the graduate students who have contributed to the work (Dr. Tan Tai Nguyen and Ms. Nada Marquise) and the Agence Nationale de la Recherche (ACTIVATE program) for financial support. F.M. also thanks the Institut Universitaire de France and Rennes Métropole.This version is the author accepted manuscript. The final published version can be found on the publisher's website at: http://pubs.rsc.org/en/Content/ArticleLanding/2014/DT/C4DT01130A#!divAbstrac
    corecore