132 research outputs found

    Magnetic Connectivity between Active Regions 10987, 10988, and 10989 by Means of Nonlinear Force-Free Field Extrapolation

    Full text link
    Extrapolation codes for modelling the magnetic field in the corona in cartesian geometry do not take the curvature of the Sun's surface into account and can only be applied to relatively small areas, \textit{e.g.}, a single active region. We apply a method for nonlinear force-free coronal magnetic field modelling of photospheric vector magnetograms in spherical geometry which allows us to study the connectivity between multi-active regions. We use vector magnetograph data from the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS)/Vector Spectromagnetograph(VSM) to model the coronal magnetic field, where we study three neighbouring magnetically connected active regions (ARs: 10987, 10988, 10989) observed on 28, 29, and 30 March 2008, respectively. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between the active regions(ARs). We have studied the time evolution of magnetic field over the period of three days and found no major changes in topologies as there was no major eruption event. From this study we have concluded that active regions are much more connected magnetically than the electric current.Comment: Solar Physic

    Volume 15. Article 1. Oceanography of Long Island Sound, 1952–1954.

    Get PDF
    https://elischolar.library.yale.edu/bulletin_yale_bingham_oceanographic_collection/1154/thumbnail.jp

    Nonlinear force-free and potential field models of active-region and global coronal fields during the Whole Heliospheric Interval

    Full text link
    Between 2008/3/24 and 2008/4/2, the three active regions NOAA active regions 10987, 10988 and 10989 were observed daily by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectro-Magnetograph (VSM) while they traversed the solar disk. We use these measurements and the nonlinear force-free magnetic field code XTRAPOL to reconstruct the coronal magnetic field for each active region and compare model field lines with images from the Solar Terrestrial RElations Observatory (STEREO) and Hinode X-ray Telescope (XRT) telescopes. Synoptic maps made from continuous, round-the-clock Global Oscillations Network Group (GONG) magnetograms provide information on the global photospheric field and potential-field source-surface models based on these maps describe the global coronal field during the Whole Heliospheric Interval (WHI) and its neighboring rotations. Features of the modeled global field, such as the coronal holes and streamer belt locations, are discussed in comparison with extreme ultra-violet and coronagraph observations from STEREO. The global field is found to be far from a minimum, dipolar state. From the nonlinear models we compute physical quantities for the active regions such as the photospheric magnetic and electric current fluxes, the free magnetic energy and the relative helicity for each region each day where observations permit. The interconnectivity of the three regions is addressed in the context of the potential-field source-surface model. Using local and global quantities derived from the models, we briefly discuss the different observed activity levels of the regions.Comment: Accepted for publication in the Solar Physics Whole Heliospheric Interval (WHI) topical issue. We had difficulty squeezing this paper into arXiv's 15 Mb limit. The full paper is available here ftp://gong2.nso.edu/dsds_user/petrie/PetrieCanouAmari.pd

    Coronal Magnetic Field Structure and Evolution for Flaring AR 11117 and its Surroundings

    Full text link
    In this study, photospheric vector magnetograms obtained with the Synoptic Optical Long-term Investigations of the Sun survey (SOLIS), are used as boundary conditions to model the three-dimensional nonlinear force-free (NLFF) coronal magnetic fields as a sequence of nonlinear force-free equilibria in spherical geometry. We study the coronal magnetic field structure inside active regions and its temporal evolution. We compare the magnetic field configuration obtained from NLFF extrapolation before and after flaring event in active region (AR) 11117 and its surroundings observed on 27 October 2010. We compare the magnetic field topologies and the magnetic energy densities and study the connectivities between AR 11117 and its surroundings. During the investigated time period, we estimate the change in free magnetic energy from before to after the flare to be 1.74x10^{32}erg which represents about 13.5% of nonlinear force-free magnetic energy before the flare. In this study, we find that electric currents from AR 11117 to its surroundings were disrupted after the flare.Comment: 14 pages, 14 figures, Accepted by Solar Physics Journa

    The effect of thresholding on temporal avalanche statistics

    Full text link
    We discuss intermittent time series consisting of discrete bursts or avalanches separated by waiting or silent times. The short time correlations can be understood to follow from the properties of individual avalanches, while longer time correlations often present in such signals reflect correlations between triggerings of different avalanches. As one possible source of the latter kind of correlations in experimental time series, we consider the effect of a finite detection threshold, due to e.g. experimental noise that needs to be removed. To this end, we study a simple toy model of an avalanche, a random walk returning to the origin or a Brownian bridge, in the presence and absence of superimposed delta-correlated noise. We discuss the properties after thresholding of artificial timeseries obtained by mixing toy avalanches and waiting times from a Poisson process. Most of the resulting scalings for individual avalanches and the composite timeseries can be understood via random walk theory, except for the waiting time distributions when strong additional noise is added. Then, to compare with a more complicated case we study the Manna sandpile model of self-organized criticality, where some further complications appear.Comment: 15 pages, 12 figures, submitted to J. Stat. Mech., special issue of the UPoN2008 conferenc

    Solar Flares as Cascades of Reconnecting Magnetic Loops

    Full text link
    A model for the solar coronal magnetic field is proposed where multiple directed loops evolve in space and time. Loops injected at small scales are anchored by footpoints of opposite polarity moving randomly on a surface. Nearby footpoints of the same polarity aggregate, and loops can reconnect when they collide. This may trigger a cascade of further reconnection, representing a solar flare. Numerical simulations show that a power law distribution of flare energies emerges, associated with a scale free network of loops, indicating self-organized criticality.Comment: 4 pages, 4 figures, To be published in Phys. Rev. Let

    How to use magnetic field information for coronal loop identification?

    Full text link
    The structure of the solar corona is dominated by the magnetic field because the magnetic pressure is about four orders of magnitude higher than the plasma pressure. Due to the high conductivity the emitting coronal plasma (visible e.g. in SOHO/EIT) outlines the magnetic field lines. The gradient of the emitting plasma structures is significantly lower parallel to the magnetic field lines than in the perpendicular direction. Consequently information regarding the coronal magnetic field can be used for the interpretation of coronal plasma structures. We extrapolate the coronal magnetic field from photospheric magnetic field measurements into the corona. The extrapolation method depends on assumptions regarding coronal currents, e.g. potential fields (current free) or force-free fields (current parallel to magnetic field). As a next step we project the reconstructed 3D magnetic field lines on an EIT-image and compare with the emitting plasma structures. Coronal loops are identified as closed magnetic field lines with a high emissivity in EIT and a small gradient of the emissivity along the magnetic field.Comment: 14 pages, 3 figure

    The phase relation between sunspot numbers and soft X-ray flares

    Full text link
    To better understand long-term flare activity, we present a statistical study on soft X-ray flares from May 1976 to May 2008. It is found that the smoothed monthly peak fluxes of C-class, M-class, and X-class flares have a very noticeable time lag of 13, 8, and 8 months in cycle 21 respectively with respect to the smoothed monthly sunspot numbers. There is no time lag between the sunspot numbers and M-class flares in cycle 22. However, there is a one-month time lag for C-class flares and a one-month time lead for X-class flares with regard to sunspot numbers in cycle 22. For cycle 23, the smoothed monthly peak fluxes of C-class, M-class, and X-class flares have a very noticeable time lag of one month, 5 months, and 21 months respectively with respect to sunspot numbers. If we take the three types of flares together, the smoothed monthly peak fluxes of soft X-ray flares have a time lag of 9 months in cycle 21, no time lag in cycle 22 and a characteristic time lag of 5 months in cycle 23 with respect to the smoothed monthly sunspot numbers. Furthermore, the correlation coefficients of the smoothed monthly peak fluxes of M-class and X-class flares and the smoothed monthly sunspot numbers are higher in cycle 22 than those in cycles 21 and 23. The correlation coefficients between the three kinds of soft X-ray flares in cycle 22 are higher than those in cycles 21 and 23. These findings may be instructive in predicting C-class, M-class, and X-class flares regarding sunspot numbers in the next cycle and the physical processes of energy storage and dissipation in the corona.Comment: 8 pages, 3 figures, Accepted for publication in Astrophysics & Space Scienc

    Sunquake generation by coronal magnetic restructuring

    Get PDF
    Sunquakes are the surface signatures of acoustic waves in the Sun's interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the magnetic field changes that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfven-sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic field angle changes by the order of 10 degrees in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the time scale of the tilt change are of secondary importance.Comment: 6 pages, 3 figures; accepted to Ap

    Comparing magnetic field extrapolations with measurements of magnetic loops

    Full text link
    We compare magnetic field extrapolations from a photospheric magnetogram with the observationally inferred structure of magnetic loops in a newly developed active region. This is the first time that the reconstructed 3D-topology of the magnetic field is available to test the extrapolations. We compare the observations with potential fields, linear force-free fields and non-linear force-free fields. This comparison reveals that a potential field extrapolation is not suitable for a reconstruction of the magnetic field in this young, developing active region. The inclusion of field-line-parallel electric currents, the so called force-free approach, gives much better results. Furthermore, a non-linear force-free computation reproduces the observations better than the linear force-free approximation, although no free parameters are available in the former case.Comment: 5 pages, 3 figure
    • …
    corecore