11 research outputs found

    Preoperative language mapping using navigated TMS compared with extra-operative direct cortical stimulation using intracranial electrodes: A case report

    Get PDF
    Highlights 1. rTMS provides a non-invasive means of performing pre-operative language mapping. 2. Sensitivity and specificity in epilepsy patients is lower than reported in tumour surgery. 3. Future methodological improvements may improve this

    Distinct Patterns of Brain Metabolism in Patients at Risk of Sudden Unexpected Death in Epilepsy

    Get PDF
    Objective: To characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (18FDG-PET). Methods: We studied patients with refractory focal epilepsy at high (n = 56) and low (n = 69) risk of SUDEP who underwent interictal 18FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS). A whole brain analysis was employed to explore regional differences in interictal metabolic patterns. We contrasted these findings with regional brain metabolism more directly related to frequency of FBTCS. Results: Regions associated with cardiorespiratory and somatomotor regulation differed in interictal metabolism. In patients at relatively high risk of SUDEP, fluorodeoxyglucose (FDG) uptake was increased in the basal ganglia, ventral diencephalon, midbrain, pons, and deep cerebellar nuclei; uptake was decreased in the left planum temporale. These patterns were distinct from the effect of FBTCS frequency, where increasing frequency was associated with decreased uptake in bilateral medial superior frontal gyri, extending into the left dorsal anterior cingulate cortex. Significance: Regions critical to cardiorespiratory and somatomotor regulation and to recovery from vital challenges show altered interictal metabolic activity in patients with frequent FBTCS considered to be at relatively high-risk of SUDEP, and shed light on the processes that may predispose patients to SUDEP

    Case Studies in Neuroscience: Evidence of motor thalamus reorganization following bilateral forearm amputations

    No full text
    Following injury, functional improvement can result from central nervous system plasticity. Use-dependent plasticity of motor systems is evident, for example, in recovery of function resulting from rehabilitative interventions. Here, we present a single patient who underwent bilateral microelectrode-guided stereotactic implantation of deep brain stimulating leads for the treatment of essential tremor 52 yr following bilateral arm amputations. The tremor affected his upper extremities and had rendered him unable to perform fine motor tasks with his prostheses, significantly reducing his independence. We found a large territory of neurons in the ventral intermediate nucleus of his thalamus that responded to shoulder protraction, the movement that he used to control fine motor movements of his terminal hook prostheses. We propose that reorganization of this motor nucleus may have occurred secondary to a use-dependent gain of function in neurons that were previously involved in hand movement

    Peri-ictal hypoxia is related to extent of regional brain volume loss accompanying generalized tonic-clonic seizures

    Get PDF
    OBJECTIVES: Hypoxia, or abnormally low blood-oxygen levels, often accompanies seizures and may elicit brain structural changes in people with epilepsy which contribute to central processes underlying sudden unexpected death in epilepsy (SUDEP). The extent to which hypoxia may be related to brain structural alterations in this patient group remains unexplored. METHODS: We analyzed high-resolution T1-weighted magnetic resonance imaging (MRI) to determine brain morphometric and volumetric alterations in people with generalized tonic-clonic seizures (GTCS) recorded during long-term video-electroencephalography (VEEG), recruited from two sites (n = 22), together with data from age- and sex-matched healthy controls (n = 43). Subjects were sub-divided into those with mild/moderate (GTCS-hypox-mild/moderate, n = 12) and severe (GTCS-hypox-severe, n = 10) hypoxia, measured by peripheral oxygen saturation (SpO2 ) during VEEG. Whole-brain voxel-based morphometry (VBM) and regional volumetry were used to assess group comparisons and correlations between brain structural measurements as well as the duration and extent of hypoxia during GTCS. RESULTS: Morphometric and volumetric alterations appeared in association with peri-GTCS hypoxia, including volume loss in the periaqueductal gray (PAG), thalamus, hypothalamus, vermis, cerebellum, parabrachial pons, and medulla. Thalamic and PAG volume was significantly reduced in GTCS patients with severe hypoxia compared with GTCS patients with mild/moderate hypoxia. Brainstem volume loss appeared in both hypoxia groups, although it was more extensive in those with severe hypoxia. Significant negative partial correlations emerged between thalamic and hippocampal volume and extent of hypoxia, whereas vermis and accumbens volumes declined with increasing hypoxia duration. SIGNIFICANCE: Brain structural alterations in patients with GTCS are related to the extent of hypoxia in brain sites that serve vital functions. Although the changes are associative only, they provide evidence of injury to regulatory brain sites related to respiratory manifestations of seizures

    Simulating cortical development as a self constructing process: A novel multi-scale approach combining molecular and physical aspects

    Get PDF
    Current models of embryological development focus on intracellular processes such as gene expression and protein networks, rather than on the complex relationship between subcellular processes and the collective cellular organization these processes support. We have explored this collective behavior in the context of neocortical development, by modeling the expansion of a small number of progenitor cells into a laminated cortex with layer and cell type specific projections. The developmental process is steered by a formal language analogous to genomic instructions, and takes place in a physically realistic three-dimensional environment. A common genome inserted into individual cells control their individual behaviors, and thereby gives rise to collective developmental sequences in a biologically plausible manner. The simulation begins with a single progenitor cell containing the artificial genome. This progenitor then gives rise through a lineage of offspring to distinct populations of neuronal precursors that migrate to form the cortical laminae. The precursors differentiate by extending dendrites and axons, which reproduce the experimentally determined branching patterns of a number of different neuronal cell types observed in the cat visual cortex. This result is the first comprehensive demonstration of the principles of self-construction whereby the cortical architecture develops. In addition, our model makes several testable predictions concerning cell migration and branching mechanisms

    Prominent synaptic and metabolic abnormalities revealed by proteomic analysis of the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder

    No full text
    There is evidence for both similarity and distinction in the presentation and molecular characterization of schizophrenia and bipolar disorder. In this study, we characterized protein abnormalities in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder using two-dimensional gel electrophoresis. Tissue samples were obtained from 35 individuals with schizophrenia, 35 with bipolar disorder and 35 controls. Eleven protein spots in schizophrenia and 48 in bipolar disorder were found to be differentially expressed (P<0.01) in comparison to controls, with 7 additional spots found to be altered in both diseases. Using mass spectrometry, 15 schizophrenia-associated proteins and 51 bipolar disorder-associated proteins were identified. The functional groups most affected included synaptic proteins (7 of the 15) in schizophrenia and metabolic or mitochondrial-associated proteins (25 of the 51) in bipolar disorder. Six of seven synaptic-associated proteins abnormally expressed in bipolar disorder were isoforms of the septin family, while two septin protein spots were also significantly differentially expressed in schizophrenia. This finding represented the largest number of abnormalities from one protein family. All septin protein spots were upregulated in disease in comparison to controls. This study provides further characterization of the synaptic pathology present in schizophrenia and of the metabolic dysfunction observed in bipolar disorder. In addition, our study has provided strong evidence implicating the septin protein family of proteins in psychiatric disorders for the first time
    corecore