325 research outputs found
Self-consistent Coulomb effects and charge distribution of quantum dot arrays
This paper considers the self-consistent Coulomb interaction within arrays of
self-assembled InAs quantum dots (QDs) which are embedded in a pn structure.
Strong emphasis is being put on the statistical occupation of the electronic QD
states which has to be solved self-consistently with the actual
three-dimensional potential distribution. A model which is based on a Green's
function formalism including screening effects is used to calculate the
interaction of QD carriers within an array of QDs, where screening due to the
inhomogeneous bulk charge distribution is taken into acount. We apply our model
to simulate capacitance-voltage (CV) characteristics of a pn structure with
embedded QDs. Different size distributions of QDs and ensembles of spatially
perodic and randomly distributed arrays of QDs are investigated.Comment: submitted to pr
Impact of Atmospheric Rivers on Future Poleward Moisture Transport and Arctic Climate in EC-Earth2
Alongside mean increases in poleward moisture transport (PMT) to the Arctic, most climate models also project a linear increase in the interannual variability (IAV) with future warming. It is still uncertain to what extent atmospheric rivers (ARs) contribute to the projected IAV increase of PMT. We analyzed large-ensemble climate simulations to (a) explore the link between PMT and ARs in the present-day (PD) and in two warmer climates (+2 and +3°C compared to pre-industrial global mean temperature), (b) assess the dynamic contribution to changes in future ARs, and (c) analyze the effect of ARs on Arctic climate on interannual timescales. We find that the share of AR-related PMT (ARPMT) to PMT increases from 42% in the PD to 53% in the +3°C climate. Our results show that the mean increases in AR-frequency and intensity are mainly caused by higher atmospheric moisture levels, while dynamic variability regulates regional ARs on an interannual basis. Notably, the amount of ARs reaching the Arctic in any given region and season strongly depends on the regional jet stream position and speed southwest of this region. This suggests that future changes in dynamics may significantly amplify or dampen the regionally consistent moisture-induced increase in ARs in a warmer climate. Our results further support previous findings that positive ARPMT anomalies are profoundly linked to increased surface air temperature and precipitation, especially in the colder seasons, and have a predominantly negative effect on sea ice.</p
Redesign of plates by large admissible perturbations
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76482/1/AIAA-12089-360.pd
Dynamics of a Josephson Array in a Resonant Cavity
We derive dynamical equations for a Josephson array coupled to a resonant
cavity by applying the Heisenberg equations of motion to a model Hamiltonian
described by us earlier [Phys. Rev. B {\bf 63}, 144522 (2001); Phys. Rev. B
{\bf 64}, 179902 (E)]. By means of a canonical transformation, we also show
that, in the absence of an applied current and dissipation, our model reduces
to one described by Shnirman {\it et al} [Phys. Rev. Lett. {\bf 79}, 2371
(1997)] for coupled qubits, and that it corresponds to a capacitive coupling
between the array and the cavity mode. From extensive numerical solutions of
the model in one dimension, we find that the array locks into a coherent,
periodic state above a critical number of active junctions, that the
current-voltage characteristics of the array have self-induced resonant steps
(SIRS's), that when active junctions are synchronized on a SIRS, the
energy emitted into the resonant cavity is quadratic in , and that when a
fixed number of junctions is biased on a SIRS, the energy is linear in the
input power. All these results are in agreement with recent experiments. By
choosing the initial conditions carefully, we can drive the array into any of a
variety of different integer SIRS's. We tentatively identify terms in the
equations of motion which give rise to both the SIRS's and the coherence
threshold. We also find higher-order integer SIRS's and fractional SIRS's in
some simulations. We conclude that a resonant cavity can produce threshold
behavior and SIRS's even in a one-dimensional array with appropriate
experimental parameters, and that the experimental data, including the coherent
emission, can be understood from classical equations of motion.Comment: 15 pages, 10 eps figures, submitted to Phys. Rev.
Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems
We study the transfer of spectral weight in the photoemission and optical
spectra of strongly correlated electron systems. Within the LISA, that becomes
exact in the limit of large lattice coordination, we consider and compare two
models of correlated electrons, the Hubbard model and the periodic Anderson
model. The results are discussed in regard of recent experiments. In the
Hubbard model, we predict an anomalous enhancement optical spectral weight as a
function of temperature in the correlated metallic state which is in
qualitative agreement with optical measurements in . We argue that
anomalies observed in the spectroscopy of the metal are connected to the
proximity to a crossover region in the phase diagram of the model. In the
insulating phase, we obtain an excellent agreement with the experimental data
and present a detailed discussion on the role of magnetic frustration by
studying the resolved single particle spectra. The results for the periodic
Anderson model are discussed in connection to recent experimental data of the
Kondo insulators and . The model can successfully explain
the different energy scales that are associated to the thermal filling of the
optical gap, which we also relate to corresponding changes in the density of
states. The temperature dependence of the optical sum rule is obtained and its
relevance for the interpretation of the experimental data discussed. Finally,
we argue that the large scattering rate measured in Kondo insulators cannot be
described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR
Resonant-Cavity-Induced Phase Locking and Voltage Steps in a Josephson Array
We describe a simple dynamical model for an underdamped Josephson junction
array coupled to a resonant cavity. From numerical solutions of the model in
one dimension, we find that (i) current-voltage characteristics of the array
have self-induced resonant steps (SIRS), (ii) at fixed disorder and coupling
strength, the array locks into a coherent, periodic state above a critical
number of active Josephson junctions, and (iii) when active junctions are
synchronized on an SIRS, the energy emitted into the resonant cavity is
quadratic with . All three features are in agreement with a recent
experiment [Barbara {\it et al}, Phys. Rev. Lett. {\bf 82}, 1963 (1999)]}.Comment: 4 pages, 3 eps figures included. Submitted to PRB Rapid Com
Full capacitance-matrix effects in driven Josephson-junction arrays
We study the dynamic response to external currents of periodic arrays of
Josephson junctions, in a resistively capacitively shunted junction (RCSJ)
model, including full capacitance-matrix effects}. We define and study three
different models of the capacitance matrix : Model A
includes only mutual capacitances; Model B includes mutual and self
capacitances, leading to exponential screening of the electrostatic fields;
Model C includes a dense matrix that is constructed
approximately from superposition of an exact analytic solution for the
capacitance between two disks of finite radius and thickness. In the latter
case the electrostatic fields decay algebraically. For comparison, we have also
evaluated the full capacitance matrix using the MIT fastcap algorithm, good for
small lattices, as well as a corresponding continuum effective-medium analytic
evaluation of a finite voltage disk inside a zero-potential plane. In all cases
the effective decays algebraically with distance, with
different powers. We have then calculated current voltage characteristics for
DC+AC currents for all models. We find that there are novel giant capacitive
fractional steps in the I-V's for Models B and C, strongly dependent on the
amount of screening involved. We find that these fractional steps are quantized
in units inversely proportional to the lattice sizes and depend on the
properties of . We also show that the capacitive steps
are not related to vortex oscillations but to localized screened phase-locking
of a few rows in the lattice. The possible experimental relevance of these
results is also discussed.Comment: 12 pages 18 Postscript figures, REVTEX style. Paper to appear in July
1, Vol. 58, Phys. Rev. B 1998 All PS figures include
A Universal Phase Diagram for PMN-xPT and PZN-xPT
The phase diagram of the Pb(Mg1/3Nb2/3)O3 and PbTiO3 solid solution (PMN-xPT)
indicates a rhombohedral ground state for x < 0.32. X-ray powder measurements
by Dkhil et al. show a rhombohedrally split (222) Bragg peak for PMN-10%PT at
80 K. Remarkably, neutron data taken on a single crystal of the same compound
with comparable q-resolution reveal a single resolution-limited (111) peak down
to 50 K, and thus no rhombohedral distortion. Our results suggest that the
structure of the outer layer of these relaxors differs from that of the bulk,
which is nearly cubic, as observed in PZN by Xu et al.Comment: Replaced Fig. 3 with better versio
Super diversity and city branding: Rotterdam in perspective
As many other cities around the world, Rotterdam has been investing in improving its image to stimulate urban development and to attract visitors, residents and investors. In particular, during the last 15 years the municipality of Rotterdam has intensified its attempts to develop a ‘brand’ that fits the ‘new Rotterdam’, which was gradually rebuilt after destructive bombardments during the Second World War (Riezebos 2014). In 2014 Rotterdam was ranked 8th by ‘Rough Guide’ in the list of ‘Top 10 Cities to See’, whereas the ‘New York Times’ listed Rotterdam in the top 10 of 52 Places to Go. These rankings demonstrate Rotterdam’s success in repositioning itself, using the physical interior of the city as a key element in its branding strategy.</p
- …