1,052 research outputs found
Thermal fluctuation field for current-induced domain wall motion
Current-induced domain wall motion in magnetic nanowires is affected by
thermal fluctuation. In order to account for this effect, the
Landau-Lifshitz-Gilbert equation includes a thermal fluctuation field and
literature often utilizes the fluctuation-dissipation theorem to characterize
statistical properties of the thermal fluctuation field. However, the theorem
is not applicable to the system under finite current since it is not in
equilibrium. To examine the effect of finite current on the thermal
fluctuation, we adopt the influence functional formalism developed by Feynman
and Vernon, which is known to be a useful tool to analyze effects of
dissipation and thermal fluctuation. For this purpose, we construct a quantum
mechanical effective Hamiltonian describing current-induced domain wall motion
by generalizing the Caldeira-Leggett description of quantum dissipation. We
find that even for the current-induced domain wall motion, the statistical
properties of the thermal noise is still described by the
fluctuation-dissipation theorem if the current density is sufficiently lower
than the intrinsic critical current density and thus the domain wall tilting
angle is sufficiently lower than pi/4. The relation between our result and a
recent result, which also addresses the thermal fluctuation, is discussed. We
also find interesting physical meanings of the Gilbert damping alpha and the
nonadiabaticy parameter beta; while alpha characterizes the coupling strength
between the magnetization dynamics (the domain wall motion in this paper) and
the thermal reservoir (or environment), beta characterizes the coupling
strength between the spin current and the thermal reservoir.Comment: 16 page, no figur
Prediction of Giant Spin Motive Force due to Rashba Spin-Orbit Coupling
Magnetization dynamics in a ferromagnet can induce a spin-dependent electric
field through spin motive force. Spin current generated by the spin-dependent
electric field can in turn modify the magnetization dynamics through
spin-transfer torque. While this feedback effect is usually weak and thus
ignored, we predict that in Rashba spin-orbit coupling systems with large
Rashba parameter , the coupling generates the spin-dependent
electric field [\pm(\alpha_{\rm R}m_e/e\hbar) (\vhat{z}\times \partial
\vec{m}/\partial t)], which can be large enough to modify the magnetization
dynamics significantly. This effect should be relevant for device applications
based on ultrathin magnetic layers with strong Rashba spin-orbit coupling.Comment: 4+ pages, 2 figure
Chiral magnetoresistance in Pt/Co/Pt zigzag wires
The Rashba effect leads to a chiral precession of the spins of moving
electrons while the Dzyaloshinskii-Moriya interaction (DMI) generates
preference towards a chiral profile of local spins. We predict that the
exchange interaction between these two spin systems results in a 'chiral'
magnetoresistance depending on the chirality of the local spin texture. We
observe this magnetoresistance by measuring the domain wall (DW) resistance in
a uniquely designed Pt/Co/Pt zigzag wire, and by changing the chirality of the
DW with applying an in-plane magnetic field. A chirality-dependent DW
resistance is found, and a quantitative analysis shows a good agreement with a
theory based on the Rashba model. Moreover, the DW resistance measurement
allows us to independently determine the strength of the Rashba effect and the
DMI simultaneously, and the result implies a possible correlation between the
Rashba effect, the DMI, and the symmetric Heisenberg exchange
Transfer of Spectral Weight in Spectroscopies of Correlated Electron Systems
We study the transfer of spectral weight in the photoemission and optical
spectra of strongly correlated electron systems. Within the LISA, that becomes
exact in the limit of large lattice coordination, we consider and compare two
models of correlated electrons, the Hubbard model and the periodic Anderson
model. The results are discussed in regard of recent experiments. In the
Hubbard model, we predict an anomalous enhancement optical spectral weight as a
function of temperature in the correlated metallic state which is in
qualitative agreement with optical measurements in . We argue that
anomalies observed in the spectroscopy of the metal are connected to the
proximity to a crossover region in the phase diagram of the model. In the
insulating phase, we obtain an excellent agreement with the experimental data
and present a detailed discussion on the role of magnetic frustration by
studying the resolved single particle spectra. The results for the periodic
Anderson model are discussed in connection to recent experimental data of the
Kondo insulators and . The model can successfully explain
the different energy scales that are associated to the thermal filling of the
optical gap, which we also relate to corresponding changes in the density of
states. The temperature dependence of the optical sum rule is obtained and its
relevance for the interpretation of the experimental data discussed. Finally,
we argue that the large scattering rate measured in Kondo insulators cannot be
described by the periodic Anderson model.Comment: 19 pages + 29 figures. Submitted to PR
Optical Conductivity in Mott-Hubbard Systems
We study the transfer of spectral weight in the optical spectra of a strongly
correlated electron system as a function of temperature and interaction
strength. Within a dynamical mean field theory of the Hubbard model that
becomes exact in the limit of large lattice coordination, we predict an
anomalous enhancement of spectral weight as a function of temperature in the
correlated metallic state and report on experimental measurements which agree
with this prediction in . We argue that the optical conductivity
anomalies in the metal are connected to the proximity to a crossover region in
the phase diagram of the model.Comment: 12 pages and 4 figures, to appear in Phys. Rev. Lett., v 75, p 105
(1995
Self-consistent Coulomb effects and charge distribution of quantum dot arrays
This paper considers the self-consistent Coulomb interaction within arrays of
self-assembled InAs quantum dots (QDs) which are embedded in a pn structure.
Strong emphasis is being put on the statistical occupation of the electronic QD
states which has to be solved self-consistently with the actual
three-dimensional potential distribution. A model which is based on a Green's
function formalism including screening effects is used to calculate the
interaction of QD carriers within an array of QDs, where screening due to the
inhomogeneous bulk charge distribution is taken into acount. We apply our model
to simulate capacitance-voltage (CV) characteristics of a pn structure with
embedded QDs. Different size distributions of QDs and ensembles of spatially
perodic and randomly distributed arrays of QDs are investigated.Comment: submitted to pr
Heterologously-expressed and Liposome-reconstituted Human Transient Receptor Potential Melastatin 4 Channel (TRPM4) is a Functional Tetramer
Mutation, irregular expression and sustained activation of the Transient Receptor Potential Channel, type Melastatin 4 (TRPM4), have been linked to various cardiovascular diseases. However, much remains unknown about the structure of this important ion channel. Here, we have purified a heterologously expressed TRPM4-eGFP fusion protein and investigated the oligomeric state of TRPM4-eGFP in detergent micelles using crosslinking, native gel electrophoresis, multi-angle laser light scattering and electron microscopy. Our data indicate that TRPM4 is tetrameric, like other TRP channels studied to date. Furthermore, the functionality of liposome reconstituted TRPM4-eGFP was examined using electrophysiology. Single-channel recordings from TRPM4-eGFP proteoliposomes showed inhibition of the channel using Flufenamic acid, a well-established inhibitor of TRPM4, suggesting that the channels are functional upon reconstitution. Our characterisation of the oligomeric structure of TRPM4 and the ability to reconstitute functional channels in liposomes should facilitate future studies into the structure, function and pharmacology of this therapeutically relevant channel
Full capacitance-matrix effects in driven Josephson-junction arrays
We study the dynamic response to external currents of periodic arrays of
Josephson junctions, in a resistively capacitively shunted junction (RCSJ)
model, including full capacitance-matrix effects}. We define and study three
different models of the capacitance matrix : Model A
includes only mutual capacitances; Model B includes mutual and self
capacitances, leading to exponential screening of the electrostatic fields;
Model C includes a dense matrix that is constructed
approximately from superposition of an exact analytic solution for the
capacitance between two disks of finite radius and thickness. In the latter
case the electrostatic fields decay algebraically. For comparison, we have also
evaluated the full capacitance matrix using the MIT fastcap algorithm, good for
small lattices, as well as a corresponding continuum effective-medium analytic
evaluation of a finite voltage disk inside a zero-potential plane. In all cases
the effective decays algebraically with distance, with
different powers. We have then calculated current voltage characteristics for
DC+AC currents for all models. We find that there are novel giant capacitive
fractional steps in the I-V's for Models B and C, strongly dependent on the
amount of screening involved. We find that these fractional steps are quantized
in units inversely proportional to the lattice sizes and depend on the
properties of . We also show that the capacitive steps
are not related to vortex oscillations but to localized screened phase-locking
of a few rows in the lattice. The possible experimental relevance of these
results is also discussed.Comment: 12 pages 18 Postscript figures, REVTEX style. Paper to appear in July
1, Vol. 58, Phys. Rev. B 1998 All PS figures include
A Universal Phase Diagram for PMN-xPT and PZN-xPT
The phase diagram of the Pb(Mg1/3Nb2/3)O3 and PbTiO3 solid solution (PMN-xPT)
indicates a rhombohedral ground state for x < 0.32. X-ray powder measurements
by Dkhil et al. show a rhombohedrally split (222) Bragg peak for PMN-10%PT at
80 K. Remarkably, neutron data taken on a single crystal of the same compound
with comparable q-resolution reveal a single resolution-limited (111) peak down
to 50 K, and thus no rhombohedral distortion. Our results suggest that the
structure of the outer layer of these relaxors differs from that of the bulk,
which is nearly cubic, as observed in PZN by Xu et al.Comment: Replaced Fig. 3 with better versio
Resonant-Cavity-Induced Phase Locking and Voltage Steps in a Josephson Array
We describe a simple dynamical model for an underdamped Josephson junction
array coupled to a resonant cavity. From numerical solutions of the model in
one dimension, we find that (i) current-voltage characteristics of the array
have self-induced resonant steps (SIRS), (ii) at fixed disorder and coupling
strength, the array locks into a coherent, periodic state above a critical
number of active Josephson junctions, and (iii) when active junctions are
synchronized on an SIRS, the energy emitted into the resonant cavity is
quadratic with . All three features are in agreement with a recent
experiment [Barbara {\it et al}, Phys. Rev. Lett. {\bf 82}, 1963 (1999)]}.Comment: 4 pages, 3 eps figures included. Submitted to PRB Rapid Com
- …
