1,802 research outputs found

    Laser pulses for coherent xuv Raman excitation

    Get PDF
    We combine multi-channel electronic structure theory with quantum optimal control to derive Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and phase control facilitated by the pump pulse carrier envelope phase. Our results open a route to creating core-hole excitations in molecules and aggregates that locally address specific atoms and represent the first step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes

    Structure and spectroscopy of doped helium clusters using quantum Monte Carlo techniques

    Full text link
    We present a comparative study of the rotational characteristics of various molecule-doped 4He clusters using quantum Monte Carlo techniques. The theoretical conclusions obtained from both zero and finite temperature Monte Carlo studies confirm the presence of two different dynamical regimes that correlate with the magnitude of the rotational constant of the molecule, i.e., fast or slow rotors. For a slow rotor, the effective rotational constant for the molecule inside the helium droplet can be determined by a microscopic two-fluid model in which helium densities computed by path integral Monte Carlo are used as input, as well as by direct computation of excited energy levels. For a faster rotor, the conditions for application of the two-fluid model for dynamical analysis are usually not fulfilled and the direct determination of excitation energies is then mandatory. Quantitative studies for three molecules are summarized, showing in each case excellent agreement with experimental results

    Hybrid Optimization Schemes for Quantum Control

    Get PDF
    Optimal control theory is a powerful tool for solving control problems in quantum mechanics, ranging from the control of chemical reactions to the implementation of gates in a quantum computer. Gradient-based optimization methods are able to find high fidelity controls, but require considerable numerical effort and often yield highly complex solutions. We propose here to employ a two-stage optimization scheme to significantly speed up convergence and achieve simpler controls. The control is initially parametrized using only a few free parameters, such that optimization in this pruned search space can be performed with a simplex method. The result, considered now simply as an arbitrary function on a time grid, is the starting point for further optimization with a gradient-based method that can quickly converge to high fidelities. We illustrate the success of this hybrid technique by optimizing a holonomic phasegate for two superconducting transmon qubits coupled with a shared transmission line resonator, showing that a combination of Nelder-Mead simplex and Krotov's method yields considerably better results than either one of the two methods alone.Comment: 17 pages, 5 figures, 2 table

    Charting the circuit QED design landscape using optimal control theory

    Full text link
    With recent improvements in coherence times, superconducting transmon qubits have become a promising platform for quantum computing. They can be flexibly engineered over a wide range of parameters, but also require us to identify an efficient operating regime. Using state-of-the-art quantum optimal control techniques, we exhaustively explore the landscape for creation and removal of entanglement over a wide range of design parameters. We identify an optimal operating region outside of the usually considered strongly dispersive regime, where multiple sources of entanglement interfere simultaneously, which we name the quasi-dispersive straddling qutrits (QuaDiSQ) regime. At a chosen point in this region, a universal gate set is realized by applying microwave fields for gate durations of 50 ns, with errors approaching the limit of intrinsic transmon coherence. Our systematic quantum optimal control approach is easily adapted to explore the parameter landscape of other quantum technology platforms.Comment: 13 pages, 5 figures, 2 pages supplementary, 1 supplementary figur

    The political-military exercise : a progress report

    Get PDF
    Cover title"August 16, 1963.""#1393"--handwritten on coverIncludes bibliographical referencesProgress report; August 16, 196

    Robustness of high-fidelity Rydberg gates with single-site addressability

    Get PDF
    Controlled phase (CPHASE) gates can in principle be realized with trapped neutral atoms by making use of the Rydberg blockade. Achieving the ultra-high fidelities required for quantum computation with such Rydberg gates is however compromised by experimental inaccuracies in pulse amplitudes and timings, as well as by stray fields that cause fluctuations of the Rydberg levels. We report here a comparative study of analytic and numerical pulse sequences for the Rydberg CPHASE gate that specifically examines the robustness of the gate fidelity with respect to such experimental perturbations. Analytical pulse sequences of both simultaneous and stimulated Raman adiabatic passage (STIRAP) are found to be at best moderately robust under these perturbations. In contrast, optimal control theory is seen to allow generation of numerical pulses that are inherently robust within a predefined tolerance window. The resulting numerical pulse shapes display simple modulation patterns and their spectra contain only one additional frequency beyond the basic resonant Rydberg gate frequencies. Pulses of such low complexity should be experimentally feasible, allowing gate fidelities of order 99.90 - 99.99% to be achievable under realistic experimental conditions.Comment: 12 pages, 14 figure

    Collective Effects in Linear Spectroscopy of Dipole-Coupled Molecular Arrays

    Get PDF
    We present a consistent analysis of linear spectroscopy for arrays of nearest neighbor dipole-coupled two-level molecules that reveals distinct signatures of weak and strong coupling regimes separated for infinite size arrays by a quantum critical point. In the weak coupling regime, the ground state of the molecular array is disordered, but in the strong coupling regime it has (anti)ferroelectric ordering. We show that multiple molecular excitations (odd/even in weak/strong coupling regime) can be accessed directly from the ground state. We analyze the scaling of absorption and emission with system size and find that the oscillator strengths show enhanced superradiant behavior in both ordered and disordered phases. As the coupling increases, the single excitation oscillator strength rapidly exceeds the well known Heitler-London value. In the strong coupling regime we show the existence of a unique spectral transition with excitation energy that can be tuned by varying the system size and that asymptotically approaches zero for large systems. The oscillator strength for this transition scales quadratically with system size, showing an anomalous one-photon superradiance. For systems of infinite size, we find a novel, singular spectroscopic signature of the quantum phase transition between disordered and ordered ground states. We outline how arrays of ultra cold dipolar molecules trapped in an optical lattice can be used to access the strong coupling regime and observe the anomalous superradiant effects associated with this regime.Comment: 12 pages, 7 figures main tex
    • …
    corecore