69 research outputs found

    Cardiorespiratory Fitness Is Inversely Associated With Clustering of Metabolic Syndrome Risk Factors: The Ball State Adult Fitness Program Longitudinal Lifestyle Study

    Full text link
    Objective: The focus of this study was the association between the metabolic syndrome (MetSyn) and cardiorespiratory fitness (CRF) defined as maximal oxygen uptake (VO2max). Although previous research has shown a relationship between MetSyn and CRF, most studies are based on less objective measures of CRF and different cardiometabolic risk factor thresholds from earlier guidelines

    The Association Between the Long-Term Change in Directly Measured Cardiorespiratory Fitness and Mortality Risk

    Full text link
    Introduction: There is a strong inverse association between cardiorespiratory fitness (CRF) and mortality outcomes. This relationship has predominantly been assessed cross-sectionally, however low CRF is a modifiable risk factor, thus assessing this association using a single baseline measure may be sub-optimal. Purpose: To examine the association of the long-term change in CRF, measured using cardiopulmonary exercise testing (CPX) with all-cause and disease-specific mortality. Methods: Participants included 833 apparently healthy men and women (42.9±10.8 years) who underwent two maximal CPXs, the second CPX being ≥ 1 year following the baseline assessment. Participants were followed for 17.7 ± 11.8 years for allcause, cardiovascular disease (CVD), and cancer mortality. Cox-proportional hazard models were performed to determine the association between the change in CRF, computed as visit 1 (V1) peak oxygen consumption (VO2peak (ml·kg-1·min-1)) – visit 2 (V2) VO2peak, and mortality outcomes. Results: During follow-up, 172 participants died. Overall, the change in CPX-derived CRF was inversely related to all-cause, CVD, and cancer mortality (p\u3c0.05). Each 1 ml·kg-1·min-1 increase was associated with a 10.8, 14.7, and 15.9% reductions in allcause, CVD, and cancer mortality, respectively. The inverse relationship between CRF and all-cause mortality remained significant (p\u3c0.05) when men and women were examined independently, after adjusting for years since first CPX, baseline VO2peak, and age. Conclusion: Long-term changes in CRF were inversely related to mortality outcomes, and mortality was better predicted by CRF measured at subsequent examination than baseline CRF. These findings support the recent American Heart Association scientific statement advocating CRF as a clinical vital sign that should be assessed routinely in clinical practice, as well as support regular participation in physical activity to maintain adequate CRF levels across the lifespan

    Clinical Perspectives on Incorporating Cardiorespiratory Fitness in Clinical Practice

    Full text link
    Cardiorespiratory fitness (CRF) has been documented as a strong, independent predictor of non-communicable disease and mortality in both clinical and apparently healthy populations. This well-established relationship has impelled organizations, including the American Heart Association, to release scientific statements highlighting the importance of accurate quantification of CRF. Current knowledge of the relationship between CRF and mortality is predominantly based on estimated CRF obtained from varying indirect methods. Cardiopulmonary exercise testing (CPX), the gold standard method of CRF measurement, provides a more accurate and reliable quantification of CRF compared to estimated methods. This review provides support for the diagnostic and prognostic use of CRF based on the current literature and makes a case for the use of CPX when available, as well as the need for standardization of normative values defining CRF levels to increase the efficacy of the risk assessment. Further, clinical applications of CPX-derived CRF are discussed, providing clinicians with recommendations on how to use and interpret this measure in practice to guide clinical decisions and improve patient outcomes

    The Association between the Change in Directly Measured Cardiorespiratory Fitness across Time and Mortality Risk

    Full text link
    Background: The relationship between cardiorespiratory fitness (CRF) and mortality risk has typically been assessed using a single measurement, though some evidence suggests the change in CRF over time influences risk. This evidence is predominantly based on studies using estimated CRF (CRFe). The strength of this relationship using change in directly measured CRF over time in apparently healthy men and women is not well understood. Purpose: To examine the association of change in CRF over time, measured using cardiopulmonary exercise testing (CPX), with all-cause and disease-specific mortality and to compare baseline and subsequent CRF measurements as predictors of all-cause mortality. Methods: Participants included 833 apparently healthy men and women (42.9 ± 10.8 years) who underwent two maximal CPXs, the second CPX being ≥1 year following the baseline assessment (mean 8.6 years, range 1.0 to 40.3 years). Participants were followed for up to 17.7 (SD 11.8) years for all-cause-, cardiovascular disease- (CVD), and cancer mortality. Cox-proportional hazard models were performed to determine the association between the change in CRF, computed as visit 1 (CPX1) peak oxygen consumption (VO2peak [mL·kg−1·min−1]) – visit 2 (CPX2) VO2peak, and mortality outcomes. A Wald-Chi square test of equality was used to compare the strength of CPX1 to CPX2 VO2peak in predicting mortality. Results: During follow-up, 172 participants died. Overall, the change in CPX-CRF was inversely related to all-cause, CVD, and cancer mortality (p \u3c 0.05). Each 1 mL·kg−1·min−1 increase was associated with a ~11, 15, and 16% (all p \u3c 0.001) reduction in all-cause, CVD, and cancer mortality, respectively. The inverse relationship between CRF and all-cause mortality was significant (p \u3c 0.05) when men and women were examined independently, after adjusting for years since first CPX, baseline VO2peak, and age. Further, the Wald Chi-square test of equality found CPX2 VO2peak to be a significantly stronger predictor of all-cause mortality than CPX1 VO2peak (p \u3c 0.05). Conclusion: The change in CRF over time was inversely related to mortality outcomes, and mortality was better predicted by CRF measured at subsequent test than CPX1 CRF. These findings emphasize the importance of adopting lifestyle behaviors that promote CRF, as well as support the need for routine assessment of CRF in clinical practice to better assess risk

    Cardiorespiratory Fitness and Mortality in Healthy Men and Women

    Full text link
    Background There is a well-established inverse relationship between cardiorespiratory fitness (CRF) and mortality. However, this relationship has almost exclusively been studied using estimated CRF. Objectives This study aimed to assess the association of directly measured CRF, obtained using cardiopulmonary exercise (CPX) testing with all-cause, cardiovascular disease (CVD), and cancer mortality in apparently healthy men and women. Methods Participants included 4,137 self-referred apparently healthy adults (2,326 men, 1,811 women; mean age: 42.8 ± 12.2 years) who underwent CPX testing to determine baseline CRF. Participants were followed for 24.2 ± 11.7 years (1.1 to 49.3 years) for mortality. Cox-proportional hazard models were performed to determine the relationship of CRF (ml·kg-1·min-1) and CRF level (low, moderate, and high) with mortality outcomes. Results During follow-up, 727 participants died (524 men, 203 women). CPX-derived CRF was inversely related to all-cause, CVD, and cancer mortality. Low CRF was associated with higher risk for all-cause (hazard ratio [HR]: 1.73; 95% confidence interval [CI]: 1.20 to 3.50), CVD (HR: 2.27; 95% CI: 1.20 to 3.49), and cancer (HR: 2.07; 95% CI: 1.18 to 3.36) mortality compared with high CRF. Further, each metabolic equivalent increment increase in CRF was associated with a 11.6%, 16.1%, and 14.0% reductions in all-cause, CVD, and cancer mortality, respectively. Conclusions Given the prognostic ability of CPX-derived CRF for all-cause and disease-specific mortality outcomes, its use should be highly considered for apparently healthy populations as it may help to improve the efficacy of the individualized patient risk assessment and guide clinical decisions

    The Influence of Change in Cardiorespiratory Fitness With Short-Term Exercise Training on Mortality Risk From The Ball State Adult Fitness Longitudinal Lifestyle Study

    Full text link
    Objective To assess the influence of changes in cardiorespiratory fitness (CRF) after exercise training on mortality risk in a cohort of self-referred, apparently healthy adults. Patients and Methods A total of 683 participants (404 men, 279 women; mean age: 42.7±11.0 y) underwent two maximal cardiopulmonary exercise tests (CPX) between March 20, 1970, and December 11, 2012, to assess CRF at baseline (CPX1) and post-exercise training (CPX2). Participants were followed for an average of 29.8±10.7 years after their CPX2. Cox proportional hazards models were performed to determine the relationship of CRF change with mortality, with change in CRF as a continuous variable, as well as a categorical variable. A Wald chi-square test was used to compare the coefficients estimating the relationship of peak oxygen consumption (VO2peak) at CPX1 with VO2peak measured at CPX2 with time until death for all-cause mortality. Results During the follow-up period there were 180 deaths. When assessed independently, there were 20% (95% CI, 10–49%) and 38% (95% CI, 7–66%) lower mortality risks per 1 metabolic equivalent improvement in CRF (P\u3c.01) in men and women, respectively, after multivariable adjustment. Those that remained unfit had ∼2-fold higher risk for all-cause mortality compared with those that remained fit and CRF at CPX2 was a stronger predictor of all-cause mortality than at CPX1 (P=.02). Conclusion Improving CRF through exercise training lowers mortality risk. Clinicians should encourage individuals to participate in exercise training to improve CRF to lower risk of mortality

    Normalizing Cardiorespiratory Fitness To Fat-free Mass Improves Mortality Risk Prediction In Overweight Adults From The Ball St Cohort: 2361 Board #280 May 28 3:00 PM - 4:30 PM

    Full text link
    Cardiorespiratory fitness(CRF) is a significant predictor of mortality outcomes in various populations, including overweight and obese adults. However, CRF is commonly expressed normalized to total body weight (VO2peakTBW) which may weaken the relationship in obese adults as fat-free mass (FFM) is directly related to CRF, and increased body fat is associated with lower CRF in adults. Therefore, this study aimed to assess the relationship between CRF normalized for FFM(VO2peakFFM) and all-cause mortality, as well as compare the predictive ability of VO2peakFFM and VO2peakTBW in a cohort of self-referred overweight and obese adults

    The Association between the Change in Directly Measured Cardiorespiratory Fitness across Time and Mortality Risk

    Get PDF
    Background The relationship between cardiorespiratory fitness (CRF) and mortality risk has typically been assessed using a single measurement, though some evidence suggests the change in CRF over time influences risk. This evidence is predominantly based on studies using estimated CRF (CRFe). The strength of this relationship using change in directly measured CRF over time in apparently healthy men and women is not well understood. Purpose To examine the association of change in CRF over time, measured using cardiopulmonary exercise testing (CPX), with all-cause and disease-specific mortality and to compare baseline and subsequent CRF measurements as predictors of all-cause mortality. Methods Participants included 833 apparently healthy men and women (42.9 ± 10.8 years) who underwent two maximal CPXs, the second CPX being ≥1 year following the baseline assessment (mean 8.6 years, range 1.0 to 40.3 years). Participants were followed for up to 17.7 (SD 11.8) years for all-cause-, cardiovascular disease- (CVD), and cancer mortality. Cox-proportional hazard models were performed to determine the association between the change in CRF, computed as visit 1 (CPX1) peak oxygen consumption (VO2peak [mL·kg−1·min−1]) – visit 2 (CPX2) VO2peak, and mortality outcomes. A Wald-Chi square test of equality was used to compare the strength of CPX1 to CPX2 VO2peak in predicting mortality. Results During follow-up, 172 participants died. Overall, the change in CPX-CRF was inversely related to all-cause, CVD, and cancer mortality (p < 0.05). Each 1 mL·kg−1·min−1 increase was associated with a ~11, 15, and 16% (all p < 0.001) reduction in all-cause, CVD, and cancer mortality, respectively. The inverse relationship between CRF and all-cause mortality was significant (p < 0.05) when men and women were examined independently, after adjusting for years since first CPX, baseline VO2peak, and age. Further, the Wald Chi-square test of equality found CPX2 VO2peak to be a significantly stronger predictor of all-cause mortality than CPX1 VO2peak (p < 0.05). Conclusion The change in CRF over time was inversely related to mortality outcomes, and mortality was better predicted by CRF measured at subsequent test than CPX1 CRF. These findings emphasize the importance of adopting lifestyle behaviors that promote CRF, as well as support the need for routine assessment of CRF in clinical practice to better assess risk

    Cardiorespiratory Fitness Normalized to Fat-Free Mass and Mortality Risk

    Full text link
    Cardiorespiratory Fitness Normalized to Fat-Free Mass and Mortality Risk. Med. Sci. Sports Exerc., Vol. 52, No. 7, pp. 1532–1537, 2020. Purpose: Cardiorespiratory fitness (CRF) is known to be directly related to fat-free mass (FFM), therefore, it has been suggested that normalizing CRF to FFM (V˙O2peakFFM) may be the most accurate expression of CRF as related to exercise performance and cardiorespiratory function. However, the influence of ˙O2peakFFM (mL·kg FFM−1·min−1) on predicting mortality has been largely unexplored. This study aimeVd to primarily assess the relationship between V˙O2peakFFM and all-cause and disease-specific mortality risk in apparently healthy adults. Further, this study sought to compare the predictive ability of V˙O2peakFFM to V˙O2peak normalized to total body weight (V˙ O2peakTBW) for mortality out-comes. Methods: Participants included 2905 adults (1555 men, 1350 women) who completed a cardiopulmonary exercise test between 1970 and 2016 to determine CRF. Body composition was assessed using the skinfold method to estimate FFM. Cardiorespiratory fitness was expressed as V˙ O2peakTBW and V˙O2peakFFM. Participants were followed for 19.0 ± 11.7 yr after their cardiopulmonary exercise test for mortality outcomes. Cox-proportional hazard models were performed to determine the relationship of V˙O2peakFFM with mortality outcomes. Parameter estimates were assessed to compare the predictive ability of CRF expressed as V˙O2peakTBW and V˙O2peakFFM. Results: Overall, VO2peakFFM was inversely related to all-cause, cardiovascular disease, and cancer mortality, with a 16.2%, 8.4%, and 8.0% lower risk per 1 mL·kg FFM−1·min−1 improvement, respectively (P \u3c 0.01). Further, assessment of the parameter estimates showed V˙O2peakFFM to be a significantly stronger predictor of all-cause mortality than V˙ O2peakTBW (parameter estimates, −0.49 vs −0.16). Conclusions: Body composition is an important factor when considering the relationship between CRF and mortality risk. Clinicians should consider normalizing CRF to FFM when feasible, because it will strengthen the predictive power of the measure

    Comparison of Non-Exercise Cardiorespiratory Fitness Prediction Equations in Apparently Healthy Adults

    Full text link
    Aims: A recent scientific statement suggests clinicians should routinely assess cardiorespiratory fitness using at least non-exercise prediction equations. However, no study has comprehensively compared the many non-exercise cardiorespiratory fitness prediction equations to directly-measured cardiorespiratory fitness using data from a single cohort. Our purpose was to compare the accuracy of non-exercise prediction equations to directly-measured cardiorespiratory fitness and evaluate their ability to classify an individual\u27s cardiorespiratory fitness. Methods: The sample included 2529 tests from apparently healthy adults (42% female, aged 45.4 ± 13.1 years (mean±standard deviation). Estimated cardiorespiratory fitness from 28 distinct non-exercise prediction equations was compared with directly-measured cardiorespiratory fitness, determined from a cardiopulmonary exercise test. Analysis included the Benjamini-Hochberg procedure to compare estimated cardiorespiratory fitness with directly-measured cardiorespiratory fitness, Pearson product moment correlations, standard error of estimate values, and the percentage of participants correctly placed into three fitness categories. Results: All of the estimated cardiorespiratory fitness values from the equations were correlated to directly measured cardiorespiratory fitness (p \u3c 0.001) although the R2 values ranged from 0.25-0.70 and the estimated cardiorespiratory fitness values from 27 out of 28 equations were statistically different compared with directly-measured cardiorespiratory fitness. The range of standard error of estimate values was 4.1-6.2 ml·kg-1·min-1. On average, only 52% of participants were correctly classified into the three fitness categories when using estimated cardiorespiratory fitness. Conclusion: Differences exist between non-exercise prediction equations, which influences the accuracy of estimated cardiorespiratory fitness. The present analysis can assist researchers and clinicians with choosing a non-exercise prediction equation appropriate for epidemiological or population research. However, the error and misclassification associated with estimated cardiorespiratory fitness suggests future research is needed on the clinical utility of estimated cardiorespiratory fitness. Keywords: Prognosis; cardiopulmonary exercise test; exercise test; fitness algorithm; maximum oxygen consumption
    • …
    corecore