91 research outputs found

    Optimality of feedback control for qubit purification under inefficient measurement

    Get PDF
    A quantum system may be purified, i.e., projected into a pure state, faster if one applies feedback operations during the measurement process. However, the existing results suggest that such an enhancement is only possible when the measurement efficiency exceeds 0.5, which is difficult to achieve experimentally. We address the task of finding the global optimal feedback control for purifying a single qubit in the presence of measurement inefficiency. We use the Bloch vector length, a more physical and practical quantity than purity, to assess the quality of the state, and employ a backward-iteration algorithm to find the globally optimal strategy. Our results show that a speedup is available for quantum efficiencies well below 0.5, which opens the possibility of experimental implementation in existing systems

    What is the optimal way to prepare a Bell state using measurement and feedback?

    Get PDF
    Recent work has shown that the use of quantum feedback can significantly enhance both the speed and success rate of measurement-based remote entanglement generation, but it is generally unknown what feedback protocols are optimal for these tasks. Here we consider two common measurements that are capable of projecting into pairwise entangled states, namely half- and full-parity measurements of two qubits, and determine in each case a globally optimal protocol for generation of entanglement. For the half-parity measurement, we rederive a previously described protocol using more general methods and prove that it is globally optimal for several figures of merit, including maximal concurrence or fidelity and minimal time to reach a specified concurrence or fidelity. For the full-parity measurement, we derive a protocol for rapid entanglement generation related to that of (Hill, Ralph, Phys. Rev. A 77, 014305), and then map the dynamics of the concurrence of the state to the Bloch vector length of an effective qubit. This mapping allows us to prove several optimality results for feedback protocols with full-parity measurements. We further show that our full-parity protocol transfers entanglement optimally from one qubit to the other amongst all measurement-based schemes. The methods developed here will be useful for deriving feedback protocols and determining their optimality properties in many other quantum systems subject to measurement and unitary operations

    Engineering autonomous error correction in stabilizer codes at finite temperature

    Get PDF
    We present an error-correcting protocol that enhances the lifetime of stabilizer code-based qubits which are susceptible to the creation of pairs of localized defects (due to stringlike error operators) at finite temperature, such as the toric code. The primary tool employed is periodic application of a local, unitary operator, which exchanges defects and thereby translates localized excitations. Crucially, the protocol does not require any measurements of stabilizer operators and therefore can be used to enhance the lifetime of a qubit in the absence of such experimental resources
    corecore