4,790 research outputs found

    Lifetimes of ultralong-range strontium Rydberg molecules in a dense BEC

    Get PDF
    The lifetimes and decay channels of ultralong-range Rydberg molecules created in a dense BEC are examined by monitoring the time evolution of the Rydberg population using field ionization. Studies of molecules with values of principal quantum number, nn, in the range n=49n=49 to n=72n=72 that contain tens to hundreds of ground state atoms within the Rydberg electron orbit show that their presence leads to marked changes in the field ionization characteristics. The Rydberg molecules have lifetimes of ∌1−5 Ό\sim1-5\,\mus, their destruction being attributed to two main processes: formation of Sr2+^+_2 ions through associative ionization, and dissociation induced through LL-changing collisions. The observed loss rates are consistent with a reaction model that emphasizes the interaction between the Rydberg core ion and its nearest neighbor ground-state atom. The measured lifetimes place strict limits on the time scales over which studies involving Rydberg species in cold, dense atomic gases can be undertaken and limit the coherence times for such measurements.Comment: 9 pages, 8 figure

    Access for Laparoendoscopic Single Site Surgery

    Get PDF
    Laparoscopic surgery is the standard of care for many abdominal and pelvic operations and is widely applied today. LESS (Laparo-Endoscopic Single Site) surgery, originally attempted in the 1990s, is an advanced minimally invasive approach that allows laparoscopic operations to be undertaken through a small (<15 mm) incision in the umbilicus, a preexisting scar. The presence of a preexisting scar allows LESS surgery to be essentially scarless, which is the key benefit to LESS operations. Herein, we review our experience with over 500 LESS operations and discuss the key techniques to establishing access to the peritoneal cavity. We review the options for obtaining access, available instrumentation, common challenges and solutions for access. We conclude that LESS surgery is safe and provides outcomes with superior cosmesis relative to conventional laparoscopy. LESS surgery should be embraced, as patient demand is rapidly increasing

    Probing Nonlocal Spatial Correlations in Quantum Gases with Ultra-long-range Rydberg Molecules

    Full text link
    We present photo-excitation of ultra-long-range Rydberg molecules as a probe of spatial correlations in quantum gases. Rydberg molecules can be created with well-defined internuclear spacing, set by the radius of the outer lobe of the Rydberg electron wavefunction RnR_n. By varying the principal quantum number nn of the target Rydberg state, the molecular excitation rate can be used to map the pair-correlation function of the trapped gas g(2)(Rn)g^{(2)}(R_n). We demonstrate this with ultracold Sr gases and probe pair-separation length scales ranging from Rn=1400−3200R_n = 1400 - 3200 a0a_0, which are on the order of the thermal de Broglie wavelength for temperatures around 1 ÎŒ\muK. We observe bunching for a single-component Bose gas of 84^{84}Sr and anti-bunching due to Pauli exclusion at short distances for a polarized Fermi gas of 87^{87}Sr, revealing the effects of quantum statistics.Comment: 6 pages, 5 figure

    Theory of excitation of Rydberg polarons in an atomic quantum gas

    Get PDF
    We present a quantum many-body description of the excitation spectrum of Rydberg polarons in a Bose gas. The many-body Hamiltonian is solved with functional determinant theory, and we extend this technique to describe Rydberg polarons of finite mass. Mean-field and classical descriptions of the spectrum are derived as approximations of the many-body theory. The various approaches are applied to experimental observations of polarons created by excitation of Rydberg atoms in a strontium Bose-Einstein condensate.Comment: 14 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1706.0371

    Creation of Rydberg Polarons in a Bose Gas

    Get PDF
    We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a pp-wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral lineshape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, nn. Spectral features are described with a functional determinant approach (FDA) that solves an extended Fr\"{o}hlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with FDA.Comment: 5 pages, 3 figure

    Synthesising interprocedural bit-precise termination proofs

    Get PDF
    Proving program termination is key to guaranteeing absence of undesirable behaviour, such as hanging programs and even security vulnerabilities such as denial-of-service attacks. To make termination checks scale to large systems, interprocedural termination analysis seems essential, which is a largely unexplored area of research in termination analysis, where most effort has focussed on difficult single-procedure problems. We present a modular termination analysis for C programs using template-based interprocedural summarisation. Our analysis combines a context-sensitive, over-approximating forward analysis with the inference of under-approximating preconditions for termination. Bit-precise termination arguments are synthesised over lexicographic linear ranking function templates. Our experimental results show that our tool 2LS outperforms state-of-the-art alternatives, and demonstrate the clear advantage of interprocedural reasoning over monolithic analysis in terms of efficiency, while retaining comparable precision

    Determination of circulating Mycobacterium tuberculosis strains and transmission patterns among pulmonary TB patients in Kawempe municipality, Uganda, using MIRU-VNTR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mycobacterial interspersed repetitive units - variable number of tandem repeats (MIRU-VNTR) genotyping is a powerful tool for unraveling clonally complex <it>Mycobacterium tuberculosis </it>(MTB) strains and detection of transmission patterns. Using MIRU-VNTR, MTB genotypes and their transmission patterns among patients with new and active pulmonary tuberculosis (PTB) in Kawempe municipality in Kampala, Uganda was determined.</p> <p>Results</p> <p>MIRU-VNTR genotyping was performed by PCR-amplification of 15 MTB-MIRU loci from 113 cultured specimens from 113 PTB patients (one culture sample per patient). To determine lineages, the genotypes were entered into the MIRU-VNTR<it>plus </it>database [<url>http://www.miru-vntrplus.org/</url>] as numerical codes corresponding to the number of alleles at each locus. Ten different lineages were obtained: Uganda II (40% of specimens), Uganda I (14%), LAM (6%), Delhi/CAS (3%), Haarlem (3%), Beijing (3%), Cameroon (3%), EAI (2%), TUR (2%) and S (1%). Uganda I and Uganda II were the most predominant genotypes. Genotypes for 29 isolates (26%) did not match any strain in the database and were considered unique. There was high diversity of MIRU-VNTR genotypes, with a total of 94 distinct patterns. Thirty four isolates grouped into 15 distinct clusters each with two to four isolates. Eight households had similar MTB strains for both index and contact cases, indicating possible transmission.</p> <p>Conclusion</p> <p>MIRU-VNTR genotyping revealed high MTB strain diversity with low clustering in Kawempe municipality. The technique has a high discriminatory power for genotyping MTB strains in Uganda.</p
    • 

    corecore