981 research outputs found

    The Extremes of Galaxy Formation & Evolution

    Get PDF
    Galaxy populations are shaped by the physical processes that regulate their star formation and central black hole growth throughout cosmic time. The primary aim of this thesis is to understand how these processes occur and how they shape evolution in some of the most extreme galaxies in the Universe including quasars, compact starbursts, and ultra-diffuse dwarfs. Gas-rich major mergers funnel large amounts of gas towards the nucleus, triggering rapid AGN accretion and compact star formation. In this work, I study powerful quasars and extreme, massive, compact starburst galaxies within the context of merger-driven galaxy evolution scenarios. One aim of this work was to place constraints on the nature of obscuration in AGN. Quasar clustering results suggest that obscured quasars reside in more massive dark matter halos than their unobscured counterparts. However, it is unclear if this discrepancy is tied to galaxy evolution processes, or is a result of other physical and selection effects. Here, I find that models that allow for obscuration to evolve on timescales typical of galaxy evolution are favored. Using similar modeling techniques, I also study a population of extremely compact, massive starburst galaxies that show extreme nuclear star formation and large-scale, energetic outflows. In order to make the first determination of their intrinsic space density, I construct a model population of these galaxies and assess the targeting criteria and selection effects to uncover the timescales over which these sources could be detected. The results indicate that extreme stellar feedback could be responsible for quenching a small but significant fraction of extremely star forming post-merger galaxies. Lastly, this work focuses on spectroscopy of ultra-diffuse galaxies (UDGs) with the Southern African Large Telescope (SALT). Understanding UDGs as a population could provide insight on how the faintest galaxies form and if weak stellar feedback could stunt the growth of what would be Milky Way-like galaxies. I use SALT to measure redshifts of UDG candidates to determine the effectiveness of selection techniques and add to the still small but growing known population of UDGs

    Physical Models for the Clustering of Obscured and Unobscured Quasars

    Full text link
    Clustering measurements of obscured and unobscured quasars show that obscured quasars reside in more massive dark matter halos than their unobscured counterparts. These results are inconsistent with simple unified (torus) scenarios, but might be explained by models in which the distribution of obscuring material depends on Eddington ratio or galaxy stellar mass. We test these possibilities by constructing simple physical models to compare to observed AGN populations. We find that previously observed relationships between obscuration and Eddington ratio or stellar mass are not sufficient reproduce the observed quasar clustering results (logMhalo/M=12.940.11+0.10\langle \log M_{\text{halo}}/M_{\odot} \rangle = 12.94 ^{+ 0.10}_{- 0.11} and logMhalo/M=12.490.08+0.08\langle \log M_{\text{halo}}/M_{\odot} \rangle = 12.49 ^{+ 0.08}_{- 0.08} for obscured and unobscured populations, respectively) while maintaining the observed fraction of obscured quasars (30-65%\%). This work suggests that evolutionary models, in which obscuration evolves on the typical timescale for black hole growth, are necessary to understand the observed clustering of mid-IR selected quasars.Comment: 14 pages, 10 figures, accepted for publication in Ap

    Ionized Gas Extended Over 40 kpc in an Odd Radio Circle Host Galaxy

    Full text link
    A new class of extragalactic astronomical sources discovered in 2021, named Odd Radio Circles (ORCs, Norris et al. 2021), are large rings of faint, diffuse radio continuum emission spanning ~1 arcminute on the sky. Galaxies at the centers of several ORCs have photometric redshifts of z~0.3-0.6, implying physical scales of several 100 kiloparsecs in diameter for the radio emission, the origin of which is unknown. Here we report spectroscopic data on an ORC including strong [OII] emission tracing ionized gas in the central galaxy of ORC4 at z=0.4512. The physical extent of the [OII] emission is ~40 kpc in diameter, larger than expected for a typical early-type galaxy (Pandya et al, 2017) but an order of magnitude smaller than the large-scale radio continuum emission. We detect a ~200 km/s velocity gradient across the [OII] nebula, as well as a high velocity dispersion of ~180 km/s. The [OII] equivalent width (EW, ~50 Ang) is extremely high for a quiescent galaxy. The morphology, kinematics, and strength of the [OII] emission are consistent with the infall of shock ionized gas near the galaxy, following a larger-scale, outward moving shock driven by a galactic wind. Both the extended optical and radio emission, while observed on very different scales, may therefore result from the same dramatic event.Comment: 7 figures, accepted to Natur

    The Space Density of Intermediate-redshift, Extremely Compact, Massive Starburst Galaxies

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/We present a measurement of the intrinsic space density of intermediate-redshift (z ∼ 0.5), massive (M * ∼ 1011 M ⊙), compact (R e ∼ 100 pc) starburst (ΣSFR ∼ 1000 M ⊙ yr−1 kpc−1) galaxies with tidal features indicative of them having undergone recent major mergers. A subset of them host kiloparsec-scale, > 1000 km s−1 outflows and have little indication of AGN activity, suggesting that extreme star formation can be a primary driver of large-scale feedback. The aim for this paper is to calculate their space density so we can place them in a better cosmological context. We do this by empirically modeling the stellar populations of massive, compact starburst galaxies. We determine the average timescale on which galaxies that have recently undergone an extreme nuclear starburst would be targeted and included in our spectroscopically selected sample. We find that massive, compact starburst galaxies targeted by our criteria would be selectable for ∼148−24+27 Myr and have an intrinsic space density nCS∼(1.1−0.3+0.5)×10−6Mpc−3 . This space density is broadly consistent with our z ∼ 0.5 compact starbursts being the most extremely compact and star-forming low-redshift analogs of the compact star-forming galaxies in the early universe, as well as them being the progenitors to a fraction of intermediate-redshift, post-starburst, and compact quiescent galaxies.Peer reviewe

    Kinematics, Structure, and Mass Outflow Rates of Extreme Starburst Galactic Outflows

    Get PDF
    We present results on the properties of extreme gas outflows in massive (M\rm M_* \sim1011 M^{11} \ \rm M_{\odot}), compact, starburst (SFR\rm SFR \sim200M yr1200 \, \rm M_{\odot} \ yr^{-1}) galaxies at z = 0.40.70.4-0.7 with very high star formation surface densities (ΣSFR\rm \Sigma_{SFR} \sim$2000 \,\rm M_{\odot} \ yr^{-1} \ kpc^{-2}).UsingopticalKeck/HIRESspectroscopyof14HizEAstarburstgalaxiesweidentifyoutflowswithmaximumvelocitiesof). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies we identify outflows with maximum velocities of 820 - 2860 \kmps. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T \sim1010^4 K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously-distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies' star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong \mgii \ absorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of \rm \sim5050 -2200 2200 \rm M_{\odot} \, yr^{-1},assumingafiducialoutflowsizeof5kpc,andmassloadingfactorsof, assuming a fiducial outflow size of 5 kpc, and mass loading factors of \eta\sim5formostofthesample.5 for most of the sample. %with \eta\sim$20 for two galaxies. While these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution.Comment: Accepted for publication in The Astrophysical Journa

    The Ionization and Dynamics of the Makani Galactic Wind

    Get PDF
    © 2023 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I; R I = 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II; R II = 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out to r = 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1 shocks that power the ionized gas, with v shock = σ wind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas: MIIHII∼MIIH2=(1−2)×109M⊙ and dM/dtIIHII∼dM/dtIIH2=170−250M⊙ yr−1. The outer wind has slowed, so that dM/dtIHII∼10M⊙ yr−1, but it contains more ionized gas, MIHII=5×109 M ⊙. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p “boost” ∼7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium.Peer reviewe

    Physical Properties of Massive Compact Starburst Galaxies with Extreme Outflows

    Get PDF
    © 2021. The Author(s). Published by the American Astronomical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (M * ∼ 1011 M ⊙), compact starburst galaxies at z = 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean ΣSFR ∼ 2000 M ⊙ yr−1 kpc−2) and powerful galactic outflows (maximum speeds v 98 ∼ 1000–3000 km s−1). Our unique data set includes an ensemble of both emission ([O ii] λλ3726,3729, Hβ, [O iii] λλ4959,5007, Hα, [N ii] λλ6549,6585, and [S ii] λλ6716,6731) and absorption (Mg ii λλ2796,2803, and Fe ii λ2586) lines that allow us to investigate the kinematics of the cool gas phase (T ∼ 104 K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n e ∼ 530 cm−3), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [S ii] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.Peer reviewedFinal Published versio
    corecore