2,083 research outputs found

    Descending Price Optimally Coordinates Search

    Full text link
    Investigating potential purchases is often a substantial investment under uncertainty. Standard market designs, such as simultaneous or English auctions, compound this with uncertainty about the price a bidder will have to pay in order to win. As a result they tend to confuse the process of search both by leading to wasteful information acquisition on goods that have already found a good purchaser and by discouraging needed investigations of objects, potentially eliminating all gains from trade. In contrast, we show that the Dutch auction preserves all of its properties from a standard setting without information costs because it guarantees, at the time of information acquisition, a price at which the good can be purchased. Calibrations to start-up acquisition and timber auctions suggest that in practice the social losses through poor search coordination in standard formats are an order of magnitude or two larger than the (negligible) inefficiencies arising from ex-ante bidder asymmetries.Comment: JEL Classification: D44, D47, D82, D83. 117 pages, of which 74 are appendi

    The geometry of manifolds and the perception of space

    Full text link
    This essay discusses the development of key geometric ideas in the 19th century which led to the formulation of the concept of an abstract manifold (which was not necessarily tied to an ambient Euclidean space) by Hermann Weyl in 1913. This notion of manifold and the geometric ideas which could be formulated and utilized in such a setting (measuring a distance between points, curvature and other geometric concepts) was an essential ingredient in Einstein's gravitational theory of space-time from 1916 and has played important roles in numerous other theories of nature ever since.Comment: arXiv admin note: substantial text overlap with arXiv:1301.064

    Variational formulation of Eisenhart's unified theory

    Full text link
    Eisenhart's classical unified field theory is based on a non-Riemannian affine connection related to the covariant derivative of the electromagnetic field tensor. The sourceless field equations of this theory arise from vanishing of the torsion trace and the symmetrized Ricci tensor. We formulate Eisenhart's theory from the metric-affine variational principle. In this formulation, a Lagrange multiplier constraining the torsion becomes the source for the Maxwell equations.Comment: 7 pages; published versio

    Proof of the Ergodic Theorem and the H-Theorem in Quantum Mechanics

    Full text link
    It is shown how to resolve the apparent contradiction between the macroscopic approach of phase space and the validity of the uncertainty relations. The main notions of statistical mechanics are re-interpreted in a quantum-mechanical way, the ergodic theorem and the H-theorem are formulated and proven (without "assumptions of disorder"), followed by a discussion of the physical meaning of the mathematical conditions characterizing their domain of validity.Comment: English translation by Roderich Tumulka of J. von Neumann: Beweis des Ergodensatzes und des H-Theorems. 41 pages LaTeX, no figures; v2: typos corrected. See also the accompanying commentary by S. Goldstein, J. L. Lebowitz, R. Tumulka, N. Zanghi, arXiv:1003.212

    Implication of Compensator Field and Local Scale Invariance in the Standard Model

    Full text link
    We introduce Weyl's scale symmetry into the standard model (SM) as a local symmetry. This necessarily introduces gravitational interactions in addition to the local scale invariance group \tilde U(1) and the SM groups SU(3) X SU(2) X U(1). The only other new ingredients are a new scalar field \sigma and the gauge field for \tilde U(1) we call the Weylon. A noteworthy feature is that the system admits the St\" uckelberg-type compensator. The \sigma couples to the scalar curvature as (-\zeta/2) \sigma^2 R, and is in turn related to a St\" uckelberg-type compensator \varphi by \sigma \equiv M_P e^{-\varphi/M_P} with the Planck mass M_P. The particular gauge \varphi = 0 in the St\" uckelberg formalism corresponds to \sigma = M_P, and the Hilbert action is induced automatically. In this sense, our model presents yet another mechanism for breaking scale invariance at the classical level. We show that our model naturally accommodates the chaotic inflation scenario with no extra field.Comment: This work is to be read in conjunction with our recent comments hep-th/0702080, arXiv:0704.1836 [hep-ph] and arXiv:0712.2487 [hep-ph]. The necessary ingredients for describing chaotic inflation in the SM as entertained by Bezrukov and Shaposhnikov [17] have been provided by our original model [8]. We regret their omission in citing our original model [8

    Multidimensional Heterogeneity and Platform Design

    Get PDF
    One of the most salient issues faced by platforms like newspapers and credit card issuers is that users are heterogeneous in the value they bring to other users or to the platform. We develop a model with multi-dimensional heterogeneity where a monopoly platform chooses (price or non-price) instruments. Users play two roles: 1) they are users of the platform’s services with heterogeneous preferences over instruments and platform characteristics; 2) they make heterogeneous contributions that endogenously determine these characteristics. The marginal (private or social) value of an instrument or characteristic includes the classical direct impact on profit and on (relevant) participants’ utilities, but also includes a novel sorting effect of marginal users and consequent further impact on platform characteristics. The sorting effect is quantified by the covariance, within the set of marginal users, between user preferences and user contributions towards characteristics. The private optimum departs from efficiency by prescribing lower quantities and catering to the tastes of marginal (rather than average) users. Under reasonable conditions, optimal allocations may be implemented uniquely by allowing each instrument to be contingent on all characteristics. We discuss applications to newspapers, broadcast media, credit cards, and suggest simple extensions to the case of imperfect competition in insurance provision and college admissions

    Monomial integrals on the classical groups

    Full text link
    This paper presents a powerfull method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group in [J. Math. Phys. 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas turn out to be of similar form. They are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows to obtain analytical expressions very efficiently. Those expressions contain the matrix dimension as a free parameter.Comment: 16 page
    corecore