67 research outputs found

    Alignments of Voids in the Cosmic Web

    Get PDF
    We investigate the shapes and mutual alignment of voids in the large scale matter distribution of a LCDM cosmology simulation. The voids are identified using the novel WVF void finder technique. The identified voids are quite nonspherical and slightly prolate, with axis ratios in the order of c:b:a approx. 0.5:0.7:1. Their orientations are strongly correlated with significant alignments spanning scales >30 Mpc/h. We also find an intimate link between the cosmic tidal field and the void orientations. Over a very wide range of scales we find a coherent and strong alignment of the voids with the tidal field computed from the smoothed density distribution. This orientation-tide alignment remains significant on scales exceeding twice the typical void size, which shows that the long range external field is responsible for the alignment of the voids. This confirms the view that the large scale tidal force field is the main agent for the large scale spatial organization of the Cosmic Web.Comment: 10 pages, 4 figures, submitted to MNRAS, for high resolution version, see http://www.astro.rug.nl/~weygaert/tim1publication/voidshape.pd

    Merging and fragmentation in the Burgers dynamics

    Full text link
    We explore the noiseless Burgers dynamics in the inviscid limit, the so-called ``adhesion model'' in cosmology, in a regime where (almost) all the fluid particles are embedded within point-like massive halos. Following previous works, we focus our investigations on a ``geometrical'' model, where the matter evolution within the shock manifold is defined from a geometrical construction. This hypothesis is at variance with the assumption that the usual continuity equation holds but, in the inviscid limit, both models agree in the regular regions. Taking advantage of the formulation of the dynamics of this ``geometrical model'' in terms of Legendre transforms and convex hulls, we study the evolution with time of the distribution of matter and the associated partitions of the Lagrangian and Eulerian spaces. We describe how the halo mass distribution derives from a triangulation in Lagrangian space, while the dual Voronoi-like tessellation in Eulerian space gives the boundaries of empty regions with shock nodes at their vertices. We then emphasize that this dynamics actually leads to halo fragmentations for space dimensions greater or equal to 2 (for the inviscid limit studied in this article). This is most easily seen from the properties of the Lagrangian-space triangulation and we illustrate this process in the two-dimensional (2D) case. In particular, we explain how point-like halos only merge through three-body collisions while two-body collisions always give rise to two new massive shock nodes (in 2D). This generalizes to higher dimensions and we briefly illustrate the three-dimensional (3D) case. This leads to a specific picture for the continuous formation of massive halos through successive halo fragmentations and mergings.Comment: 21 pages, final version published in Phys.Rev.

    Voids as a Precision Probe of Dark Energy

    Full text link
    A signature of the dark energy equation of state may be observed in the shape of voids. We estimate the constraints on cosmological parameters that would be determined from the ellipticity distribution of voids from future spectroscopic surveys already planned for the study of large scale structure. The constraints stem from the sensitivity of the distribution of ellipticity to the cosmological parameters through the variance of fluctuations of the density field smoothed at some length scale. This length scale can be chosen to be of the order of the comoving radii of voids at very early times when the fluctuations are Gaussian distributed. We use Fisher estimates to show that the constraints from void ellipticities are promising. Combining these constraints with other traditional methods results in the improvement of the Dark Energy Task Force Figure of Merit on the dark energy parameters by an order of hundred for future experiments. The estimates of these future constraints depend on a number of systematic issues which require further study using simulations. We outline these issues and study the impact of certain observational and theoretical systematics on the forecasted constraints on dark energy parameters.Comment: Submitted to PRD, 22 pages 9 figure

    Minivoids in the Local Volume

    Get PDF
    We consider a sphere of 7.5 Mpc radius, which contains 355 galaxies with accurately measured distances, to detect the nearest empty volumes. Using a simple void detection algorithm, we found six large (mini)voids in Aquila, Eridanus, Leo, Vela, Cepheus and Octans, each of more than 30 Mpc^3. Besides them, 24 middle-size "bubbles" of more than 5 Mpc^3 volume are detected, as well as 52 small "pores". The six largest minivoids occupy 58% of the considered volume. Addition of the bubbles and pores to them increases the total empty volume up to 75% and 81%, respectively. The detected local voids look like oblong potatoes with typical axial ratios b/a = 0.75 and c/a = 0.62 (in the triaxial ellipsoide approximation). Being arranged by the size of their volume, local voids follow power law of volumes-rankes dependence. A correlation Gamma-function of the Local Volume galaxies follows a power low with a formally calculated fractal dimension D = 1.5. We found that galaxies surrounding the local minivoids do not differ significantly from other nearby galaxies on their luminosity, but have appreciably higher hydrogen mass-to-luminosity ratio and also higher star formation rate. We recognize an effect of local expansion of typical minivoid to be \Delta H/H_0~(25+-15)%.Comment: 23 pages, 18 figures. Astrophysical Journal, accepte

    The Size and Shape of Voids in Three-Dimensional Galaxy Surveys

    Get PDF
    The sizes and shapes of voids in a galaxy survey depend not only on the physics of structure formation, but also on the sampling density of the survey and on the algorithm used to define voids. Using an N-body simulation with a CDM power spectrum, we study the properties of voids in samples with different number densities of galaxies, both in redshift space and in real space. When voids are defined as regions totally empty of galaxies, their characteristic volume is strongly dependent on sampling density; when they are defined as regions whose density is 0.2 times the mean galaxy density, the dependence is less strong. We compare two void-finding algorithms, one in which voids are nonoverlapping spheres, and one, based on the algorithm of Aikio and Mahonen, which does not predefine the shape of a void. Regardless of the algorithm chosen, the characteristic void size is larger in redshift space than in real space, and is larger for low sampling densities than for high sampling densities. We define an elongation statistic Q which measures the tendency of voids to be stretched or squashed along the line of sight. Using this statistic, we find that at sufficiently high sampling densities (comparable to the number densities of galaxies brighter than L_*), large voids tend to be slightly elongated along the line of sight in redshift space.Comment: LaTex, 21 pages (including 7 figures), ApJ, submitte

    A Two-Temperature Model of the Intracluster Medium

    Get PDF
    We investigate evolution of the intracluster medium (ICM), considering the relaxation process between the ions and electrons. According to the standard scenario of structure formation, ICM is heated by the shock in the accretion flow to the gravitational potential well of the dark halo. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. Then the electrons and ions exchange the energy through coulomb collisions and reach the equilibrium. From simple order estimation we find that the region where the electron temperature is considerably lower than the ion temperature spreads out on a Mpc scale. We then calculate the ion and electron temperature profiles by combining the adiabatic model of two-temperature plasma by Fox & Loeb (1997) with spherically symmetric N-body and hydrodynamic simulations based on three different cosmological models. It is found that the electron temperature is about a half of the mean temperature at radii ∌\sim 1 Mpc. This could lead to an about 50 % underestimation in the total mass contained within ∌\sim 1 Mpc when the electron temperature profiles are used. The polytropic indices of the electron temperature profiles are ≃1.5\simeq 1.5 whereas those of mean temperature ≃1.3\simeq 1.3 for r≄1r \geq 1 Mpc. This result is consistent both with the X-ray observations on electron temperature profiles and with some theoretical and numerical predictions about mean temperature profiles.Comment: 20 pages with 6 figures. Accepted for publication in Ap

    Voids in the Large-Scale Structure

    Get PDF
    Voids are the most prominent feature of the LSS of the universe. Still, they have been generally ignored in quantitative analysis of it, essentially due to the lack of an objective tool to identify and quantify the voids. To overcome this, we present the Void-Finder algorithm, a novel tool for objectively quantifying galaxy voids. The algorithm classifies galaxies as either wall- or field-galaxies. Then it identifies voids in the wall-galaxy distribution. Voids are defined as continuous volumes that do not contain any wall-galaxies. The voids must be thicker than an adjustable limit, which is refined in successive iterations. We test the algorithm using Voronoi tessellations. By appropriate scaling of the parameters we apply it to the SSRS2 survey and to the IRAS 1.2 Jy. Both surveys show similar properties: ~50% of the volume is filled by the voids, which have a scale of at least 40 Mpc, and a -0.9 under-density. Faint galaxies populate the voids more than bright ones. These results suggest that both optically and IRAS selected galaxies delineate the same LSS. Comparison with the recovered mass distribution further suggests that the observed voids in the galaxy distribution correspond well to under-dense regions in the mass distribution. This confirms the gravitational origin of the voids.Comment: Submitted to ApJ; 33 pages, aaspp4 LaTeX file, using epsfig and natbib, 1 table, 12 PS figures. Complete gzipped version is available at http://shemesh.fiz.huji.ac.il/hagai/; uuencoded file is available at http://shemesh.fiz.huji.ac.il/papers/ep3.uu or ftp://shemesh.fiz.huji.ac.i

    Reconstruction Analysis of Galaxy Redshift Surveys: A Hybrid Reconstruction Method

    Full text link
    In reconstruction analysis of galaxy redshift surveys, one works backwards from the observed galaxy distribution to the primordial density field in the same region, then evolves the primordial fluctuations forward in time with an N-body code. This incorporates assumptions about the cosmological parameters, the properties of primordial fluctuations, and the biasing relation between galaxies and mass. These can be tested by comparing the reconstruction to the observed galaxy distribution, and to peculiar velocity data. This paper presents a hybrid reconstruction method that combines the `Gaussianization'' technique of Weinberg(1992) with the dynamical schemes of Nusser & Dekel(1992) and Gramann(1993). We test the method on N-body simulations and on N-body mock catalogs that mimic the depth and geometry of the Point Source Catalog Redshift Survey and the Optical Redshift Survey. This method is more accurate than Gaussianization or dynamical reconstruction alone. Matching the observed morphology of clustering can limit the bias factor b, independent of Omega. Matching the cluster velocity dispersions and z-space distortions of the correlation function xi(s,mu) constrains the parameter beta=Omega^{0.6}/b. Relative to linear or quasi-linear approximations, a fully non-linear reconstruction makes more accurate predictions of xi(s,mu) for a given beta, thus reducing the systematic biases of beta measurements and offering further scope for breaking the degeneracy between Omega and b. It also circumvents the cosmic variance noise that limits conventional analyses of xi(s,mu). It can also improve the determination of Omega and b from joint analyses of redshift & peculiar velocity surveys as it predicts the fully non-linear peculiar velocity distribution at each point in z-space.Comment: 72 pages including 33 figures, submitted to Ap

    Cavity evolution in relativistic self-gravitating fluids

    Full text link
    We consider the evolution of cavities within spherically symmetric relativistic fluids, under the assumption that proper radial distance between neighboring fluid elements remains constant during their evolution (purely areal evolution condition). The general formalism is deployed and solutions are presented. Some of them satisfy Darmois conditions whereas others present shells and must satisfy Israel conditions, on either one or both boundary surfaces. Prospective applications of these results to some astrophysical scenarios is suggested.Comment: 10 pages Revtex. To appear in Class. Quantum Grav

    Sociology and hierarchy of voids: A study of seven nearby CAVITY galaxy voids and their dynamical CosmicFlows-3 environment

    Full text link
    Context. The present study addresses a key question related to our understanding of the relation between void galaxies and their environment: the relationship between luminous and dark matter in and around voids. Aims. To explore the extent to which local Universe voids are empty of matter, we study the full (dark+luminous) matter content of seven nearby cosmic voids that are fully contained within the CosmicFlows-3 volume. Methods. We obtained the matter-density profiles of seven cosmic voids using two independent methods. These were built from the galaxy redshift space two-point correlation function in conjunction with peculiar velocity gradients from the CosmicFlows-3 dataset. Results. The results are striking, because when the redshift survey is used, all voids show a radial positive gradient of galaxies, while based on the dynamical analysis, only three of these voids display a clear underdensity of matter in their center. Conclusions. This work constitutes the most detailed observational analysis of voids conducted so far, and shows that void emptiness should be derived from dynamical information. From this limited study, the Hercules void appears to be the best candidate for a local Universe pure "pristine volume", expanding in three directions with no dark matter located in that void.Comment: Submitted A\&A Nov 29, 2022 - AA/2022/45578 / Accepted March 3rd, 202
    • 

    corecore