55 research outputs found
ROS-generating NADPH oxidase NOX4 is a critical mediator in oncogenic H-Ras-induced DNA damage and subsequent senescence
Activated Ras oncogene induces DNA-damage response by triggering reactive oxygen species (ROS) production and this is critical for oncogene-induced senescence. Until now, little connections between oncogene expression, ROS-generating NADPH oxidases and DNA-damage response have emerged from different studies. Here we report that H-RasV12 positively regulates the NADPH oxidase system NOX4-p22phox that produces H2O2. Knocking down the NADPH oxidase with small interference RNA decreases H-RasV12-induced DNA-damage response detected by γ-H2A.X foci analysis. Using HyPer, a specific probe for H2O2, we detected an increase in H2O2 in the nucleus correlated with NOX4-p22phox perinuclear localization. DNA damage response can be caused not only by H-RasV12-driven accumulation of ROS but also by a replicative stress due to a sustained oncogenic signal. Interestingly, NOX4 downregulation by siRNA abrogated H-RasV12 regulation of CDC6 expression, an essential regulator of DNA replication. Moreover, senescence markers, such as senescence-associated heterochromatin foci, PML bodies, HP1β foci and p21 expression, induced under H-RasV12 activation were decreased with NOX4 inactivation. Taken together, our data indicate that NADPH oxidase NOX4 is a critical mediator in oncogenic H-RasV12-induced DNA-damage response and subsequent senescence
The NOX toolbox: validating the role of NADPH oxidases in physiology and disease
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis
Inefficient differentiation response to cell cycle stress leads to genomic instability and malignant progression of squamous carcinoma cells
Squamous cell carcinoma (SCC) or epidermoid cancer is a frequent and aggressive malignancy. However in apparent paradox it retains the squamous differentiation phenotype except for very dysplastic lesions. We have shown that cell cycle stress in normal epidermal keratinocytes triggers a squamous differentiation response involving irreversible mitosis block and polyploidisation. Here we show that cutaneous SCC cells conserve a partial squamous DNA damage-induced differentiation response that allows them to overcome the cell division block. The capacity to divide in spite of drug-induced mitotic stress and DNA damage made well-differentiated SCC cells more genomically instable and more malignant in vivo. Consistently, in a series of human biopsies, non-metastatic SCCs displayed a higher degree of chromosomal alterations and higher expression of the S phase regulator Cyclin E and the DNA damage signal γH2AX than the less aggressive, non-squamous, basal cell carcinomas. However, metastatic SCCs lost the γH2AX signal and Cyclin E, or accumulated cytoplasmic Cyclin E. Conversely, inhibition of endogenous Cyclin E in well-differentiated SCC cells interfered with the squamous phenotype. The results suggest a dual role of cell cycle stress-induced differentiation in squamous cancer: the resulting mitotic blocks would impose, when irreversible, a proliferative barrier, when reversible, a source of genomic instability, thus contributing to malignancy.AG is grateful to Jean-Jeaques Guilhou, Jean-Claude Rossi and the INSERM for professional support and to Renata Polakowska for the generous gift of precious BCCP cell line. We thank Lucía Barbier, Tania Lobato, Evelyn Andrades, Alicia Noriega and María Aramburu for technical assistance and Natalia Sanz for critical reading of the MS. To AG: National grants from Instituto de Salud Carlos III, Fondo de Investigación Sanitaria (ISCIII-FIS/FEDER, Spain): PI08/0890, PI11/02070, PI14/00900; Ligue Nationale Contre la Cancer (La Ligue; France). To AT: ISCIII-FIS PI10/00785. To JP: MINECO grant SAF2015-66015-R; AES grant ISCIII-RETIC RD12/0036/0009. VC was funded by a fellowship from La Ligue (France), PA by IDIVAL (Spain), RM and IdP by AG lab and ISCIII-FIS-FEDER PI11/02070 (Spain)
- …