4 research outputs found

    Irreversible proliferation of magnetic moments at cleaved surfaces of the topological Kondo insulator SmB6

    Full text link
    The compound SmB6_6 is the best established realization of a topological Kondo insulator, in which a topological insulator state is obtained through Kondo coherence. Recent studies have found evidence that the surface of SmB6_6 hosts ferromagnetic domains, creating an intrinsic platform for unidirectional ballistic transport at the domain boundaries. Here, surface-sensitive X-ray absorption (XAS) and bulk-sensitive resonant inelastic X-ray scattering (RIXS) spectra are measured at the Sm N4,5_{4,5}-edge, and used to evaluate electronic symmetries, excitations and temperature dependence near the surface of cleaved samples. The XAS data show that the density of large-moment atomic multiplet states on a cleaved surface grows irreversibly over time, to a degree that likely exceeds a related change that has recently been observed in the surface 4f orbital occupation

    High-resolution resonant inelastic extreme ultraviolet scattering from orbital and spin excitations in a Heisenberg antiferromagnet

    No full text
    We report a high-resolution resonant inelastic extreme ultraviolet (EUV) scattering study of the quantum Heisenberg antiferromagnet KCoF3. By tuning the EUV photon energy to the cobalt M23 edge, a complete set of low-energy 3d spin-orbital excitations is revealed. These low-lying electronic excitations are modeled using an extended multiplet-based mean-field calculation to identify the roles of lattice and magnetic degrees of freedom in modifying the resonant inelastic x-ray scattering (RIXS) spectral line shape. We have demonstrated that the temperature dependence of RIXS features upon the antiferromagnetic ordering transition enables us to probe the energetics of short-range spin correlations in this material

    High-resolution resonant inelastic extreme ultraviolet scattering from orbital and spin excitations in a Heisenberg antiferromagnet

    No full text
    We report a high-resolution resonant inelastic extreme ultraviolet (EUV) scattering study of the quantum Heisenberg antiferromagnet KCoF3_3. By tuning the EUV photon energy to the cobalt M23_{23} edge, a complete set of low-energy 3d spin-orbital excitations is revealed. These low-lying electronic excitations are modeled using an extended multiplet-based mean-field calculation to identify the roles of lattice and magnetic degrees of freedom in modifying the resonant inelastic x-ray scattering (RIXS) spectral line shape. We have demonstrated that the temperature dependence of RIXS features upon the antiferromagnetic ordering transition enables us to probe the energetics of short-range spin correlations in this material
    corecore