57 research outputs found

    Inhibiting tryptophan metabolism enhances interferon therapy in kidney cancer.

    Get PDF
    Renal cell carcinoma (RCC) is increasing in incidence, and a complete cure remains elusive. While immune-checkpoint antibodies are promising, interferon-based immunotherapy has been disappointing. Tryptophan metabolism, which produces immunosuppressive metabolites, is enhanced in RCC. Here we show indolamine-2,3-dioxygenase-1 (IDO1) expression, a kynurenine pathway enzyme, is increased not only in tumor cells but also in the microenvironment of human RCC compared to normal kidney tissues. Neither kynurenine metabolites nor IDO inhibitors affected the survival or proliferation of human RCC or murine renal cell adenocarcinoma (RENCA) cells in vitro. However, interferon-gamma (IFNγ) induced high levels of IDO1 in both RCC and RENCA cells, concomitant with enhanced kynurenine levels in conditioned media. Induction of IDO1 by IFNα was weaker than by IFNγ. Neither the IDO1 inhibitor methyl-thiohydantoin-DL-tryptophan (MTH-trp) nor IFNα alone inhibited RENCA tumor growth, however the combination of MTH-trp and IFNα reduced tumor growth compared to IFNα. Thus, the failure of IFNα therapy for human RCC is likely due to its inability to overcome the immunosuppressive environment created by increased IDO1. Based on our data, and given that IDO inhibitors are already in clinical trials for other malignancies, IFNα therapy with an IDO inhibitor should be revisited for RCC

    Synergistic tumor suppression by combined inhibition of telomerase and CDKN1A

    Get PDF
    Tumor suppressor p53 plays an important role in mediating growth inhibition upon telomere dysfunction. Here, we show that loss of the p53 target gene cyclin-dependent kinase inhibitor 1A (CDKN1A, also known as p21WAF1/CIP1) increases apoptosis induction following telomerase inhibition in a variety of cancer cell lines and mouse xenografts. This effect is highly specific to p21, as loss of other checkpoint proteins and CDK inhibitors did not affect apoptosis. In telomerase, inhibited cell loss of p21 leads to E2F1- and p53-mediated transcriptional activation of p53-upregulated modulator of apoptosis, resulting in increased apoptosis. Combined genetic or pharmacological inhibition of telomerase and p21 synergistically suppresses tumor growth. Furthermore, we demonstrate that simultaneous inhibition of telomerase and p21 also suppresses growth of tumors containing mutant p53 following pharmacological restoration of p53 activity. Collectively, our results establish that inactivation of p21 leads to increased apoptosis upon telomerase inhibition and thus identify a genetic vulnerability that can be exploited to treat many human cancers containing either wild-type or mutant p53
    corecore