29 research outputs found
Design of a precision calibration unit for Keck NIRC2 AO instrument
High-precision astrometry has the potential to address questions in planet formation, black hole science, Galactic structure, and more. However, in order to achieve a precision of sub-milli arcseconds (mas), we need a calibration method better than the current techniques such as on-sky calibration using calibrated stellar or stellar cluster systems, which have a precision of ~1 mas. Precision calibration unit with a regular grid of photo-lithographically manufactured pinholes combined with self-calibration techniques, on the other hand, is a new and innovative way to potentially achieve a precision of sub-mas over the entire field of view. This technique is beneficial to adaptive optic (AO) instruments for future telescopes like the Thirty Meter Telescope (TMT). In this work, we present our design for a new astrometric calibration unit to feed the NIRC2 AO instrument at the W. M. Keck Observatory. It allows calibration over a large field of view of 47" x 47"
Design of a precision calibration unit for Keck NIRC2 AO instrument
High-precision astrometry has the potential to address questions in planet formation, black hole science, Galactic structure, and more. However, in order to achieve a precision of sub-milli arcseconds (mas), we need a calibration method better than the current techniques such as on-sky calibration using calibrated stellar or stellar cluster systems, which have a precision of ~1 mas. Precision calibration unit with a regular grid of photo-lithographically manufactured pinholes combined with self-calibration techniques, on the other hand, is a new and innovative way to potentially achieve a precision of sub-mas over the entire field of view. This technique is beneficial to adaptive optic (AO) instruments for future telescopes like the Thirty Meter Telescope (TMT). In this work, we present our design for a new astrometric calibration unit to feed the NIRC2 AO instrument at the W. M. Keck Observatory. It allows calibration over a large field of view of 47" x 47"
A near-infrared pyramid wavefront sensor for Keck adaptive optics: real-time controller
A new real-time control system will be implemented within the Keck II adaptive optics system to support the new near-infrared pyramid wavefront sensor. The new real-time computer has to interface with an existing, very productive adaptive optics system. We discuss our solution to install it in an operational environment without impacting science. This solution is based on an independent SCExAO-based pyramid wavefront sensor realtime processor solution using the hardware interfaces provided by the existing Keck II real-time controller. We introduce the new pyramid real-time controller system design, its expected performance, and the modification of the operational real-time controller to support the pyramid system including interfacing with the existing deformable and tip-tilt mirrors. We describe the integration of the Saphira detector-based camera and the Boston Micromachines kilo-DM in this new architecture. We explain the software architecture and philosophy, the shared memory concept and how the real-time computer uses the power of GPUs for adaptive optics control. We discuss the strengths and weaknesses of this architecture and how it can benefit other projects. The motion control of the devices deployed on the Keck II adaptive optics bench to support the alignment of the light on the sensors is also described. The interfaces, developed to deal with the rest of the Keck telescope systems in the observatory distributed system, are reviewed. Based on this experience, we present which design ideas could have helped us integrate the new system with the previous one and the resultant performance gains
A near-infrared pyramid wavefront sensor for Keck adaptive optics: real-time controller
A new real-time control system will be implemented within the Keck II adaptive optics system to support the new near-infrared pyramid wavefront sensor. The new real-time computer has to interface with an existing, very productive adaptive optics system. We discuss our solution to install it in an operational environment without impacting science. This solution is based on an independent SCExAO-based pyramid wavefront sensor realtime processor solution using the hardware interfaces provided by the existing Keck II real-time controller. We introduce the new pyramid real-time controller system design, its expected performance, and the modification of the operational real-time controller to support the pyramid system including interfacing with the existing deformable and tip-tilt mirrors. We describe the integration of the Saphira detector-based camera and the Boston Micromachines kilo-DM in this new architecture. We explain the software architecture and philosophy, the shared memory concept and how the real-time computer uses the power of GPUs for adaptive optics control. We discuss the strengths and weaknesses of this architecture and how it can benefit other projects. The motion control of the devices deployed on the Keck II adaptive optics bench to support the alignment of the light on the sensors is also described. The interfaces, developed to deal with the rest of the Keck telescope systems in the observatory distributed system, are reviewed. Based on this experience, we present which design ideas could have helped us integrate the new system with the previous one and the resultant performance gains
Astrometry with the Keck-Interferometer: the ASTRA project and its science
The sensitivity and astrometry upgrade ASTRA of the Keck Interferometer is
introduced. After a brief overview of the underlying interferometric
principles, the technology and concepts of the upgrade are presented. The
interferometric dual-field technology of ASTRA will provide the KI with the
means to observe two objects simultaneously, and measure the distance between
them with a precision eventually better than 100 uas. This astrometric
functionality of ASTRA will add a unique observing tool to fields of
astrophysical research as diverse as exo-planetary kinematics, binary
astrometry, and the investigation of stars accelerated by the massive black
hole in the center of the Milky Way as discussed in this contribution.Comment: 22 pages, 10 figures (low resolution), contribution to the
summerschool "Astrometry and Imaging with the Very Large Telescope
Interferometer", 2 - 13 June, 2008, Keszthely, Hungary, corrected authorlis
Keck II Laser Guide Star AO System and Performance with the TOPTICA/MPBC Laser
The Keck II Laser Guide Star (LGS) Adaptive Optics (AO) System was upgraded from a dye laser to a TOPTICA/MPBC Raman-Fibre Amplification (RFA) laser in December 2015. The W. M. Keck Observatory (WMKO) has been operating its AO system with a LGS for science since 2004 using a first generation 15 W dye laser. Using the latest diode pump laser technology, Raman amplification, and a well-tuned second harmonic generator (SHG), this Next Generation Laser (NGL) is able to produce a highly stable 589 nm laser beam with the required power, wavelength and mode quality. The beam’s linear polarization and continuous wave format along with optical back pumping are designed to improve the sodium atom coupling efficiency over previously operated sodium-wavelength lasers. The efficiency and operability of the new laser has also been improved by reducing its required input power and cooling, size, and the manpower to operate and maintain it.
The new laser has been implemented on the telescope’s elevation ring with its electronics installed on a new Nasmyth sub-platform, with the capacity to support up to three laser systems for future upgrades. The laser is projected from behind the telescope’s secondary mirror using the recently implemented center launch system (CLS) to reduce LGS spot size. We will present the new laser system and its performance with respect to power, stability, wavelength, spot size, optical repumping, polarization, efficiency, and its return with respect to pointing alignment to the magnetic field. Preliminary LGSAO performance is presented with the system returning to science operations. We will also provide an update on current and future upgrades at the WMKO
First faint dual-field phase-referenced observations on the Keck interferometer
Ground-based long baseline interferometers have long been limited in
sensitivity by the short integration periods imposed by atmospheric turbulence.
The first observation fainter than this limit was performed on January 22, 2011
when the Keck Interferometer observed a K=11.5 target, about one magnitude
fainter than its K=10.3 limit. This observation was made possible by the Dual
Field Phase Referencing instrument of the ASTRA project: simultaneously
measuring the real-time effects of the atmosphere on a nearby bright guide
star, and correcting for it on the faint target, integration time longer than
the turbulence time scale are made possible. As a prelude to this
demonstration, we first present the implementation of Dual Field Phase
Referencing on the interferometer. We then detail its on-sky performance
focusing on the accuracy of the turbulence correction, and on the resulting
fringe contrast stability. We conclude with a presentation of early results
obtained with Laser Guide Star AO and the interferometer.Comment: 10 pages, 12 figures, Proc. SPIE 201
Splitting and blaming: The psychic life of neoliberal executive women
The aim of the article is to explore the psychic life of executive women under neoliberalism using psychosocial approaches. The article shows how, despite enduring unfair treatment and access to opportunities, many executive women remain emotionally invested in upholding the neoliberal ideal that if one perseveres, one shall be successful, regardless of gender. Drawing on psychosocial approaches, we explore how the accounts given by some executive women of repudiation, as denying gender inequality, and individualization, as subjects completely agentic, are underpinned by the unconscious, intertwined processes of splitting and blaming. Women sometimes split off undesirable aspects of the workplace, which repudiates gender inequality, or blame other women, which individualizes failure and responsibility for change. We explain that splitting and blaming enable some executive women to manage the anxiety evoked from threats to the neoliberal ideal of the workplace. This article thereby makes a contribution to existing postfeminist scholarship by integrating psychosocial approaches to the study of the psychic life of neoliberal executive women, by exploring why they appear unable to engage directly with and redress instances of gender discrimination in the workplace